-
Notifications
You must be signed in to change notification settings - Fork 1
/
437.path-sum-iii.py
83 lines (77 loc) · 1.98 KB
/
437.path-sum-iii.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
#
# @lc app=leetcode id=437 lang=python3
#
# [437] Path Sum III
#
# https://leetcode.com/problems/path-sum-iii/description/
#
# algorithms
# Medium (48.27%)
# Likes: 9330
# Dislikes: 451
# Total Accepted: 443.7K
# Total Submissions: 923.1K
# Testcase Example: '[10,5,-3,3,2,null,11,3,-2,null,1]\n8'
#
# Given the root of a binary tree and an integer targetSum, return the number
# of paths where the sum of the values along the path equals targetSum.
#
# The path does not need to start or end at the root or a leaf, but it must go
# downwards (i.e., traveling only from parent nodes to child nodes).
#
#
# Example 1:
#
#
# Input: root = [10,5,-3,3,2,null,11,3,-2,null,1], targetSum = 8
# Output: 3
# Explanation: The paths that sum to 8 are shown.
#
#
# Example 2:
#
#
# Input: root = [5,4,8,11,null,13,4,7,2,null,null,5,1], targetSum = 22
# Output: 3
#
#
#
# Constraints:
#
#
# The number of nodes in the tree is in the range [0, 1000].
# -10^9 <= Node.val <= 10^9
# -1000 <= targetSum <= 1000
#
#
#
# @lc code=start
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def pathSum(self, root: Optional[TreeNode], targetSum: int) -> int:
self.count = 0
if not root:
return 0
self.pathSumHelper(root, targetSum, [])
return self.count
def pathSumHelper(self, root, targetSum, path):
if not root:
return
for i in range(len(path)):
path[i] += root.val
if path[i] == targetSum:
self.count += 1
path.append(root.val)
if root.val == targetSum:
self.count += 1
self.pathSumHelper(root.left, targetSum, path)
self.pathSumHelper(root.right, targetSum, path)
path.pop()
for i in range(len(path)):
path[i] -= root.val
# @lc code=end