-
Notifications
You must be signed in to change notification settings - Fork 1
/
106.construct-binary-tree-from-inorder-and-postorder-traversal.py
71 lines (65 loc) · 1.81 KB
/
106.construct-binary-tree-from-inorder-and-postorder-traversal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
#
# @lc app=leetcode id=106 lang=python3
#
# [106] Construct Binary Tree from Inorder and Postorder Traversal
#
# https://leetcode.com/problems/construct-binary-tree-from-inorder-and-postorder-traversal/description/
#
# algorithms
# Medium (57.88%)
# Likes: 5690
# Dislikes: 85
# Total Accepted: 458.4K
# Total Submissions: 791.9K
# Testcase Example: '[9,3,15,20,7]\n[9,15,7,20,3]'
#
# Given two integer arrays inorder and postorder where inorder is the inorder
# traversal of a binary tree and postorder is the postorder traversal of the
# same tree, construct and return the binary tree.
#
#
# Example 1:
#
#
# Input: inorder = [9,3,15,20,7], postorder = [9,15,7,20,3]
# Output: [3,9,20,null,null,15,7]
#
#
# Example 2:
#
#
# Input: inorder = [-1], postorder = [-1]
# Output: [-1]
#
#
#
# Constraints:
#
#
# 1 <= inorder.length <= 3000
# postorder.length == inorder.length
# -3000 <= inorder[i], postorder[i] <= 3000
# inorder and postorder consist of unique values.
# Each value of postorder also appears in inorder.
# inorder is guaranteed to be the inorder traversal of the tree.
# postorder is guaranteed to be the postorder traversal of the tree.
#
#
#
# @lc code=start
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def buildTree(self, inorder: List[int], postorder: List[int]) -> Optional[TreeNode]:
if not inorder or not postorder:
return None
root = TreeNode(postorder[-1])
root_idx = inorder.index(postorder[-1])
root.left = self.buildTree(inorder[:root_idx], postorder[:root_idx])
root.right = self.buildTree(inorder[root_idx + 1:], postorder[root_idx:-1])
return root
# @lc code=end