-
Notifications
You must be signed in to change notification settings - Fork 1
/
104.maximum-depth-of-binary-tree.py
79 lines (74 loc) · 1.71 KB
/
104.maximum-depth-of-binary-tree.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
#
# @lc app=leetcode id=104 lang=python3
#
# [104] Maximum Depth of Binary Tree
#
# https://leetcode.com/problems/maximum-depth-of-binary-tree/description/
#
# algorithms
# Easy (73.38%)
# Likes: 9509
# Dislikes: 156
# Total Accepted: 2.1M
# Total Submissions: 2.9M
# Testcase Example: '[3,9,20,null,null,15,7]'
#
# Given the root of a binary tree, return its maximum depth.
#
# A binary tree's maximum depth is the number of nodes along the longest path
# from the root node down to the farthest leaf node.
#
#
# Example 1:
#
#
# Input: root = [3,9,20,null,null,15,7]
# Output: 3
#
#
# Example 2:
#
#
# Input: root = [1,null,2]
# Output: 2
#
#
#
# Constraints:
#
#
# The number of nodes in the tree is in the range [0, 10^4].
# -100 <= Node.val <= 100
#
#
#
# @lc code=start
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def maxDepth(self, root: Optional[TreeNode]) -> int:
if not root:
return 0
queue = [root]
depth = 0
while len(queue) > 0:
depth += 1
for _ in range(len(queue)):
node = queue.pop(0)
if node.left:
queue.append(node.left)
if node.right:
queue.append(node.right)
return depth
# @lc code=end
'''
class Solution:
def maxDepth(self, root: Optional[TreeNode]) -> int:
if not root:
return 0
return max(self.maxDepth(root.left), self.maxDepth(root.right)) + 1
'''