-
Notifications
You must be signed in to change notification settings - Fork 1
/
101.symmetric-tree.py
69 lines (65 loc) · 1.51 KB
/
101.symmetric-tree.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
#
# @lc app=leetcode id=101 lang=python3
#
# [101] Symmetric Tree
#
# https://leetcode.com/problems/symmetric-tree/description/
#
# algorithms
# Easy (53.34%)
# Likes: 12112
# Dislikes: 274
# Total Accepted: 1.5M
# Total Submissions: 2.8M
# Testcase Example: '[1,2,2,3,4,4,3]'
#
# Given the root of a binary tree, check whether it is a mirror of itself
# (i.e., symmetric around its center).
#
#
# Example 1:
#
#
# Input: root = [1,2,2,3,4,4,3]
# Output: true
#
#
# Example 2:
#
#
# Input: root = [1,2,2,null,3,null,3]
# Output: false
#
#
#
# Constraints:
#
#
# The number of nodes in the tree is in the range [1, 1000].
# -100 <= Node.val <= 100
#
#
#
# Follow up: Could you solve it both recursively and iteratively?
#
# @lc code=start
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def isSymmetric(self, root: Optional[TreeNode]) -> bool:
if not root:
return True
return self.isSymmetricHelper(root.left, root.right)
def isSymmetricHelper(self, left: Optional[TreeNode], right: Optional[TreeNode]) -> bool:
if not left and not right:
return True
if not left or not right:
return False
if left.val != right.val:
return False
return self.isSymmetricHelper(left.left, right.right) and self.isSymmetricHelper(left.right, right.left)
# @lc code=end