-
Notifications
You must be signed in to change notification settings - Fork 1
/
1008.construct-binary-search-tree-from-preorder-traversal.py
84 lines (80 loc) · 2.15 KB
/
1008.construct-binary-search-tree-from-preorder-traversal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
#
# @lc app=leetcode id=1008 lang=python3
#
# [1008] Construct Binary Search Tree from Preorder Traversal
#
# https://leetcode.com/problems/construct-binary-search-tree-from-preorder-traversal/description/
#
# algorithms
# Medium (81.12%)
# Likes: 5010
# Dislikes: 67
# Total Accepted: 285.8K
# Total Submissions: 352.4K
# Testcase Example: '[8,5,1,7,10,12]'
#
# Given an array of integers preorder, which represents the preorder traversal
# of a BST (i.e., binary search tree), construct the tree and return its root.
#
# It is guaranteed that there is always possible to find a binary search tree
# with the given requirements for the given test cases.
#
# A binary search tree is a binary tree where for every node, any descendant of
# Node.left has a value strictly less than Node.val, and any descendant of
# Node.right has a value strictly greater than Node.val.
#
# A preorder traversal of a binary tree displays the value of the node first,
# then traverses Node.left, then traverses Node.right.
#
#
# Example 1:
#
#
# Input: preorder = [8,5,1,7,10,12]
# Output: [8,5,10,1,7,null,12]
#
#
# Example 2:
#
#
# Input: preorder = [1,3]
# Output: [1,null,3]
#
#
#
# Constraints:
#
#
# 1 <= preorder.length <= 100
# 1 <= preorder[i] <= 1000
# All the values of preorder are unique.
#
#
#
# @lc code=start
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def bstFromPreorder(self, preorder: List[int]) -> Optional[TreeNode]:
if not preorder:
return None
root = TreeNode(preorder[0])
for i in range(1, len(preorder)):
self.insert(root, preorder[i])
return root
def insert(self, root: TreeNode, val: int) -> None:
if val < root.val:
if not root.left:
root.left = TreeNode(val)
else:
self.insert(root.left, val)
else:
if not root.right:
root.right = TreeNode(val)
else:
self.insert(root.right, val)
# @lc code=end