forked from zenorogue/hyperrogue
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbinary-tiling.cpp
1199 lines (1087 loc) · 38.4 KB
/
binary-tiling.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Hyperbolic Rogue -- binary tilings
// Copyright (C) 2011-2019 Zeno Rogue, see 'hyper.cpp' for details
/** \file binary-tiling.cpp
* \brief Binary tilings in 2D and 3D
*/
#include "hyper.h"
namespace hr {
EX namespace bt {
/** note: nihsolv and kd3 tilings return bt::in(). They are defined elsewhere, although some of bt:: functions are used for them */
EX bool in() {
#if CAP_BT
return cgflags & qBINARY;
#else
return false;
#endif
}
#if !CAP_BT
EX int updir() { return 0; }
#endif
#if CAP_BT
#if HDR
enum bindir {
bd_right = 0,
bd_up_right = 1,
bd_up = 2,
bd_up_left = 3,
bd_left = 4,
bd_down = 5, /* for cells of degree 6 */
bd_down_left = 5, /* for cells of degree 7 */
bd_down_right = 6 /* for cells of degree 7 */
};
#endif
EX int type_of(heptagon *h) {
return h->c7->type;
}
// 0 - central, -1 - left, +1 - right
EX int mapside(heptagon *h) {
return h->zebraval;
}
#if DEBUG_BINARY_TILING
map<heptagon*, long long> xcode;
map<long long, heptagon*> rxcode;
long long expected_xcode(heptagon *h, int d) {
auto r =xcode[h];
if(d == 0) return r + 1;
if(d == 1) return 2*r + 1;
if(d == 2) return 2*r;
if(d == 3) return 2*r - 1;
if(d == 4) return r-1;
if(d == 5 && type_of(h) == 6) return r / 2;
if(d == 5 && type_of(h) == 7) return (r-1) / 2;
if(d == 6 && type_of(h) == 7) return (r+1) / 2;
breakhere();
}
#endif
EX heptagon *path(heptagon *h, int d, int d1, std::initializer_list<int> p) {
static int rec = 0;
rec++; if(rec>100) exit(1);
// printf("{generating path from %p (%d/%d) dir %d:", h, type_of(h), mapside(h), d);
heptagon *h1 = h;
for(int d0: p) {
// printf(" [%d]", d0);
h1 = currentmap->may_create_step(h1, d0);
// printf(" %p", h1);
}
#if DEBUG_BINARY_TILING
if(xcode[h1] != expected_xcode(h, d)) {
printf("expected_xcode mismatch\n");
breakhere();
}
#endif
// printf("}\n");
if(h->move(d) && h->move(d) != h1) {
printf("already connected to something else (1)\n");
breakhere();
}
if(h1->move(d1) && h1->move(d1) != h) {
printf("already connected to something else (2)\n");
breakhere();
}
h->c.connect(d, h1, d1, false);
rec--;
return h1;
}
EX heptagon *pathc(heptagon *h, int d, int d1, std::vector<std::initializer_list<int>> p) {
h->cmove(S7-1);
int z = h->c.spin(S7-1);
return path(h, d, d1, p[z]);
}
EX ld hororec_scale = 0.25;
EX ld horohex_scale = 0.6;
EX void make_binary_lands(heptagon *parent, heptagon *h) {
if(!parent->emeraldval) parent->emeraldval = currentmap->gamestart()->land;
eLand z = eLand(parent->emeraldval);
int chance = 0;
if(ls::no_walls() || parent->emeraldval == laCrossroads4) {
eLand x = parent->c7->land;
parent->c7->land = z;
chance = wallchance(parent->c7, deep_ocean_at(parent->c7, parent->c7));
parent->c7->land = x;
}
if(ls::std_chaos()) chance = 1000;
if(chance && hrand(40000) < chance)
h->emeraldval = getNewLand(z);
else
h->emeraldval = z;
}
EX heptagon *build(heptagon *parent, int d, int d1, int t, int side, int delta) {
auto h = buildHeptagon1(init_heptagon(t), parent, d, hsA, d1);
h->distance = parent->distance + delta;
h->dm4 = parent->dm4 + delta;
h->c7 = NULL;
if(parent->c7) h->c7 = newCell(t, h);
h->zebraval = side;
switch(geometry) {
case gBinary4:
if(d < 2)
h->emeraldval = gmod(parent->emeraldval * 2 + d, 15015);
else
h->emeraldval = gmod((parent->emeraldval - d1) * 7508, 15015);
break;
case gTernary:
if(d < 2)
h->emeraldval = gmod(parent->emeraldval * 3 + d, 10010);
else
h->emeraldval = gmod((parent->emeraldval - d1) * 3337, 10010);
break;
case gHoroRec: {
int x = parent->fieldval & 4095;
int y = (parent->fieldval >> 12) & 4095;
if(d < 2) tie(x, y) = make_pair(y, gmod(x * 2 + d, 1155));
else tie(x,y) = make_pair(gmod((y-d1)*578, 1155), x);
h->fieldval = x + (y << 12);
break;
}
case gBinary3: {
int x = parent->fieldval & 4095;
int y = (parent->fieldval >> 12) & 4095;
if(d < 4) x = gmod(x * 2 + (d&1), 1155), y = gmod(y * 2 + (d>>1), 1155);
else x = gmod((x-(d1&1))*578, 1155), y = gmod((y-(d1>>1))*578, 1155);
h->fieldval = x + (y << 12);
break;
}
default:
break;
}
if(WDIM == 3 && h->c7) make_binary_lands(parent, h);
#if DEBUG_BINARY_TILING
xcode[h] = expected_xcode(parent, d);
if(rxcode.count(xcode[h])) {
printf("xcode clash\n");
breakhere();
}
rxcode[xcode[h]] = h;
#endif
return h;
}
#if MAXMDIM==4
EX heptagon *build3(heptagon *parent, int d, int d1, int delta) {
int side = 0;
if(geometry == gBinary3) {
if(d < 4) side = (parent->zebraval * 2 + d) % 5;
if(d == S7-1) side = ((5+parent->zebraval-d1) * 3) % 5;
}
if(geometry == gHoroHex) {
if(d < 3) side = (parent->zebraval + d) % 3;
if(d == S7-1) side = (parent->zebraval + 3 - d1) % 3;
}
return build(parent, d, d1, S7, side, delta);
}
#endif
struct hrmap_binary : hrmap {
heptagon *origin;
std::mt19937 directions_generator;
hrmap_binary(heptagon *o) : origin(o) { set_seed(); }
void set_seed() { directions_generator.seed(137137137); }
int nextdir(int choices) { return directions_generator() % choices; }
heptagon *getOrigin() override { return origin; }
hrmap_binary() {
set_seed();
origin = hyperbolic_origin();
#if DEBUG_BINARY_TILING
bt::xcode.clear();
bt::rxcode.clear();
bt::xcode[&h] = (1 << 16);
bt::rxcode[1<<16] = &h;
#endif
origin->zebraval = 0;
origin->emeraldval = 0;
}
heptagon *create_step(heptagon *parent, int d) override {
auto h = parent;
switch(geometry) {
case gBinaryTiling: {
switch(d) {
case bd_right: {
if(mapside(h) > 0 && type_of(h) == 7)
return path(h, d, bd_left, {bd_left, bd_down, bd_right, bd_up});
else if(mapside(h) >= 0)
return build(parent, bd_right, bd_left, type_of(parent) ^ 1, 1, 0);
else if(type_of(h) == 6)
return path(h, d, bd_left, {bd_down, bd_right, bd_up, bd_left});
else
return path(h, d, bd_left, {bd_down_right, bd_up});
}
case bd_left: {
if(mapside(h) < 0 && type_of(h) == 7)
return path(h, d, bd_right, {bd_right, bd_down, bd_left, bd_up});
else if(mapside(h) <= 0)
return build(parent, bd_left, bd_right, type_of(parent) ^ 1, -1, 0);
else if(type_of(h) == 6)
return path(h, d, bd_right, {bd_down, bd_left, bd_up, bd_right});
else
return path(h, d, bd_right, {bd_down_left, bd_up});
}
case bd_up_right: {
return path(h, d, bd_down_left, {bd_up, bd_right});
}
case bd_up_left: {
return path(h, d, bd_down_right, {bd_up, bd_left});
}
case bd_up:
return build(parent, bd_up, bd_down, 6, mapside(parent), 1);
default:
/* bd_down */
if(type_of(h) == 6) {
if(mapside(h) == 0)
return build(parent, bd_down, bd_up, 6, 0, -1);
else if(mapside(h) == 1)
return path(h, d, bd_up, {bd_left, bd_left, bd_down, bd_right});
else if(mapside(h) == -1)
return path(h, d, bd_up, {bd_right, bd_right, bd_down, bd_left});
}
/* bd_down_left */
else if(d == bd_down_left) {
return path(h, d, bd_up_right, {bd_left, bd_down});
}
else if(d == bd_down_right) {
return path(h, d, bd_up_left, {bd_right, bd_down});
}
}
throw hr_exception("wrong dir");
}
case gBinary4: {
switch(d) {
case 0: case 1:
return build(parent, d, 3, 5, d, 1);
case 3:
return build(parent, 3, parent->zebraval, 5, nextdir(2), -1);
case 2:
if(parent->zebraval == 0)
return path(h, 2, 4, {3, 1});
else
return path(h, 2, 4, {3, 2, 0});
case 4:
if(parent->zebraval == 1)
return path(h, 4, 2, {3, 0});
else
return path(h, 4, 2, {3, 4, 1});
default:
throw hr_exception("wrong dir");
}
}
case gTernary: {
switch(d) {
case 0: case 1: case 2:
return build(parent, d, 4, 6, d, 1);
case 4:
return build(parent, 4, parent->zebraval, 6, nextdir(3), -1);
case 3:
if(parent->zebraval < 2)
return path(h, 3, 5, {4, parent->zebraval + 1});
else
return path(h, 3, 5, {4, 3, 0});
case 5:
if(parent->zebraval > 0)
return path(h, 5, 3, {4, parent->zebraval - 1});
else
return path(h, 5, 3, {4, 5, 2});
default:
throw hr_exception("wrong dir");
}
}
#if MAXMDIM >= 4
case gBinary3: {
switch(d) {
case 0: case 1:
case 2: case 3:
return build3(parent, d, 8, 1);
case 8:
return build3(parent, 8, nextdir(4), -1);
case 4:
parent->cmove(8);
if(parent->c.spin(8) & 1)
return path(h, 4, 5, {8, parent->c.spin(8) ^ 1});
else
return path(h, 4, 5, {8, 4, parent->c.spin(8) ^ 1});
case 5:
parent->cmove(8);
if(!(parent->c.spin(8) & 1))
return path(h, 5, 4, {8, parent->c.spin(8) ^ 1});
else
return path(h, 5, 4, {8, 5, parent->c.spin(8) ^ 1});
case 6:
parent->cmove(8);
if(parent->c.spin(8) & 2)
return path(h, 6, 7, {8, parent->c.spin(8) ^ 2});
else
return path(h, 6, 7, {8, 6, parent->c.spin(8) ^ 2});
case 7:
parent->cmove(8);
if(!(parent->c.spin(8) & 2))
return path(h, 7, 6, {8, parent->c.spin(8) ^ 2});
else
return path(h, 7, 6, {8, 7, parent->c.spin(8) ^ 2});
default:
throw hr_exception("wrong dir");
}
}
case gHoroRec: {
switch(d) {
case 0: case 1:
return build3(parent, d, 6, 1);
case 6:
return build3(parent, 6, nextdir(2), -1);
case 2:
parent->cmove(6);
if(parent->c.spin(6) == 0)
return path(h, 2, 4, {6, 1});
else
return path(h, 2, 4, {6, 3, 0});
case 4:
parent->cmove(6);
if(parent->c.spin(6) == 0)
return path(h, 4, 2, {6, 5, 1});
else
return path(h, 4, 2, {6, 0});
case 3:
parent->cmove(6);
return path(h, 3, 5, {6, 4, parent->c.spin(6)});
case 5:
parent->cmove(6);
return path(h, 5, 3, {6, 2, parent->c.spin(6)});
default:
throw hr_exception("wrong dir");
}
}
case gHoroTris: {
switch(d) {
case 0: case 1: case 2: case 3:
return build3(parent, d, 7, 1);
case 7:
return build3(parent, 7, nextdir(3), -1);
case 4: case 5: case 6: {
parent->cmove(7);
int s = parent->c.spin(7);
if(s == 0) return path(h, d, d, {7, d-3});
else if(s == d-3) return path(h, d, d, {7, 0});
else return path(h, d, d, {7, d, 9-d-s});
}
default:
throw hr_exception("wrong dir");
}
}
case gHoroHex: {
// the comment is a picture...
// generated with the help of hexb.cpp
switch(d) {
case 0: case 1: case 2:
return build3(parent, d, 13, 1);
case 13:
return build3(parent, 13, nextdir(3), -1);
case 3:
return pathc(h, 3, 12, {{13,4,2}, {13,5,2}, {13,3,2}});
case 4:
return pathc(h, 4, 12, {{13,6,2,0}, {13,7,0,0}, {13,8,1,0}});
case 5:
return pathc(h, 5, 12, {{13,1,1}, {13,2,1}, {13,0,1}});
case 6:
return pathc(h, 6, 10, {{13,5}, {13,3}, {13,4}});
case 7:
return pathc(h, 7, 11, {{13,2}, {13,0}, {13,1}});
case 8:
return pathc(h, 8, 9, {{13,6,0}, {13,7,1}, {13,8,2}});
case 9:
return pathc(h, 9, 8, {{13,4}, {13,5}, {13,3}});
case 10:
return pathc(h, 10, 6, {{13,6,2}, {13,7,0}, {13,8,1}});
case 11:
return pathc(h, 11, 7, {{13,1}, {13,2}, {13,0}});
case 12: {
h->cmove(13);
int z = h->c.spin(13);
return path(h, 12, (z+1)%3+3, {13, z+6});
}
default:
throw hr_exception("wrong dir");
}
}
#endif
default:
throw hr_exception("wrong geometry");
}
}
int shvid(cell *c) override {
if(geometry == gBinaryTiling)
return c->type-6;
else if(geometry == gBinary4 || geometry == gTernary)
return c->master->zebraval;
else
return 0;
}
hyperpoint get_corner(cell *c, int cid, ld cf) override {
if(WDIM == 3) {
println(hlog, "get_corner_position called");
return C0;
}
return mid_at_actual(bt::get_horopoint(bt::get_corner_horo_coordinates(c, cid)), 3/cf);
}
int updir_at(heptagon *h) {
if(geometry != gBinaryTiling) return updir();
else if(type_of(h) == 6) return bd_down;
else if(mapside(h) == 1) return bd_left;
else if(mapside(h) == -1) return bd_right;
else throw hr_exception("wrong dir");
}
transmatrix relative_matrixh(heptagon *h2, heptagon *h1, const hyperpoint& hint) override {
if(gmatrix0.count(h2->c7) && gmatrix0.count(h1->c7))
return inverse_shift(gmatrix0[h1->c7], gmatrix0[h2->c7]);
transmatrix gm = Id, where = Id;
while(h1 != h2) {
if(h1->distance <= h2->distance) {
int d = updir_at(h2);
where = iadj(h2, d) * where;
h2 = may_create_step(h2, d);
}
else {
int d = updir_at(h1);
gm = gm * adj(h1, d);
h1 = may_create_step(h1, d);
}
}
return gm * where;
}
ld spin_angle(cell *c, int d) override {
if(WDIM == 3 || geometry == gBinary4 || geometry == gTernary) {
return hrmap::spin_angle(c, d);
}
if(d == NODIR) return 0;
if(d == c->type-1) d++;
return -(d+2)*M_PI/4;
}
transmatrix adj(heptagon *h, int dir) override {
if(geometry == gBinaryTiling) switch(dir) {
case bd_up: return xpush(-log(2));
case bd_left: return parabolic(-1);
case bd_right: return parabolic(+1);
case bd_down:
if(h->type == 6) return xpush(log(2));
/* case bd_down_left: */
return parabolic(-1) * xpush(log(2));
case bd_down_right:
return parabolic(+1) * xpush(log(2));
case bd_up_left:
return xpush(-log(2)) * parabolic(-1);
case bd_up_right:
return xpush(-log(2)) * parabolic(1);
default:
throw hr_exception("unknown direction");
}
else if(use_direct_for(dir))
return cgi.direct_tmatrix[dir];
else {
h->cmove(dir);
return cgi.inverse_tmatrix[h->c.spin(dir)];
}
}
const transmatrix iadj(heptagon *h, int dir) { heptagon *h1 = h->cmove(dir); return adj(h1, h->c.spin(dir)); }
void virtualRebase(heptagon*& base, transmatrix& at) override {
while(true) {
double currz = at[LDIM][LDIM];
heptagon *h = base;
heptagon *newbase = NULL;
transmatrix bestV;
for(int d=0; d<S7; d++) {
transmatrix V2 = iadj(h, d) * at;
double newz = V2[LDIM][LDIM];
if(newz < currz) {
currz = newz;
bestV = V2;
newbase = h->cmove(d);
}
}
if(newbase) {
base = newbase;
at = bestV;
continue;
}
return;
}
}
~hrmap_binary() { if(origin) clearfrom(origin); }
};
EX hrmap *new_map() { return new hrmap_binary; }
struct hrmap_alternate_binary : hrmap_binary {
heptagon *origin;
hrmap_alternate_binary(heptagon *o) { origin = o; }
~hrmap_alternate_binary() { clearfrom(origin); }
};
EX hrmap *new_alt_map(heptagon *o) { return new hrmap_binary(o); }
/** \brief return if ew should use direct_tmatrix[dir] to get the adjacent cell the given direction
*
* Otherwise, this is the 'up' direction and thus we should use inverse_tmatrix for the inverse direction
*/
EX bool use_direct_for(int dir) {
return (cgi.use_direct >> dir) & 1;
}
/** \brief which coordinate is expanding */
EX int expansion_coordinate() {
if(WDIM == 2) return 0;
return 2;
}
/** \brief by what factor does the area expand after moving one level in hr::bt::expansion_coordinate() */
EX ld area_expansion_rate() {
switch(geometry) {
case gBinaryTiling: case gBinary4:
return 2;
case gTernary:
return 3;
case gBinary3: case gHoroTris:
return 4;
case gHoroRec:
return 2;
case gHoroHex:
return 3;
case gNil:
return 1;
case gEuclidSquare:
return 1;
case gKiteDart3:
return pow(golden_phi, 2);
case gSol:
return 1;
case gNIH:
return 6;
case gSolN:
return 3/2.;
case gArnoldCat:
return 1;
default:
return 0;
}
}
/** \brief by what factor do the lengths expand after moving one level in hr::bt::expansion_coordinate() */
EX ld expansion() {
if(WDIM == 2) return area_expansion_rate();
else return sqrt(area_expansion_rate());
}
/** \brief Get a point in the current cell, normalized to [-1,1]^WDIM
*
* This function returns the matrix moving point (0,0,0) to the given point in a parallelogram-like box
* Dimensions of the box are normalized to [-1,1], and directions are the same as usual (i.e., expansion_coordinate() is the correct one)
*
* This should works for all geometries which actually have boxes.
*
* For binary-based tessellations which are not based on square sections (e.g. gKiteDart3), 'x' and 'y' coordinates are not given in [-1,1], but take binary_width into account
*
* Otherwise: just return h
*
* See also: in devmods/tests.cpp, -bt-test tests whether this works correctly
*
*/
EX transmatrix normalized_at(hyperpoint h) {
ld z2 = -log(2) / 2;
ld z3 = -log(3) / 2;
ld bwhn = vid.binary_width / 2;
ld bwh = vid.binary_width * z2;
ignore(bwh); ignore(bwhn);
ld r2 = sqrt(2);
const ld hs = hororec_scale;
auto &x = h[0], &y = h[1], &z = h[2];
switch(geometry) {
case gBinaryTiling: case gBinary4:
return bt::parabolic(y/2) * xpush(x*z2);
case gTernary:
return bt::parabolic(y/2) * xpush(x*z3);
#if CAP_SOLV
case gSol:
return xpush(bwh*x) * ypush(bwh*y) * zpush(z2*z);
case gSolN: case gNIH:
return xpush(bwhn*x) * ypush(bwhn*y) * zpush(-z*.5);
case gArnoldCat:
return rgpushxto0(asonov::tx*x/2 + asonov::ty*y/2 + asonov::tz*z/2);
#endif
case gNil:
return rgpushxto0(point31(x/2, y/2, z/2));
case gEuclidSquare:
return rgpushxto0(hpxy(x, y));
case gBinary3:
return parabolic3(x,y) * xpush(z*z2);
case gHoroRec:
return parabolic3(r2*hs*x, 2*hs*y) * xpush(z*z2/2);
case gHoroTris:
return parabolic3(x,y) * xpush(z*z2);
case gHoroHex:
return parabolic3(x,y) * xpush(z*z3/2);
case gKiteDart3:
return parabolic3(x,y) * xpush(-z*log_golden_phi/2);
default:
return rgpushxto0(h);
}
}
EX transmatrix normalized_at(ld x, ld y, ld z IS(0)) {
return normalized_at(point3(x, y, z));
}
EX int updir() {
if(geometry == gBinary4) return 3;
if(geometry == gTernary) return 4;
if(geometry == gBinaryTiling) return 5;
if(kite::in()) return 0;
if(!bt::in()) return 0;
return S7-1;
}
EX int dirs_outer() {
switch(geometry) {
case gBinary3: return 4;
case gHoroTris: return 4;
case gHoroRec: return 2;
case gHoroHex: return 6;
default: return -1;
}
}
EX int dirs_inner() {
if(among(geometry, gBinaryTiling, gHoroHex)) return 2;
return 1;
}
EX void build_tmatrix() {
if(among(geometry, gBinaryTiling, gSol, gArnoldCat)) return; // unused
auto& direct_tmatrix = cgi.direct_tmatrix;
auto& inverse_tmatrix = cgi.inverse_tmatrix;
auto& use_direct = cgi.use_direct;
use_direct = (1 << (S7-1)) - 1;
if(geometry == gBinary4) {
use_direct = 3;
direct_tmatrix[0] = xpush(-log(2)) * parabolic(-0.5);
direct_tmatrix[1] = xpush(-log(2)) * parabolic(+0.5);
direct_tmatrix[2] = parabolic(1);
direct_tmatrix[4] = parabolic(-1);
use_direct = 1+2+4+16;
}
if(geometry == gTernary) {
direct_tmatrix[0] = xpush(-log(3)) * parabolic(-1);
direct_tmatrix[1] = xpush(-log(3));
direct_tmatrix[2] = xpush(-log(3)) * parabolic(+1);
direct_tmatrix[3] = parabolic(1);
direct_tmatrix[5] = parabolic(-1);
use_direct = 1+2+4+8+32;
}
if(geometry == gBinary3) {
direct_tmatrix[0] = xpush(-log(2)) * parabolic3(-1, -1);
direct_tmatrix[1] = xpush(-log(2)) * parabolic3(1, -1);
direct_tmatrix[2] = xpush(-log(2)) * parabolic3(-1, 1);
direct_tmatrix[3] = xpush(-log(2)) * parabolic3(1, 1);
direct_tmatrix[4] = parabolic3(-2, 0);
direct_tmatrix[5] = parabolic3(+2, 0);
direct_tmatrix[6] = parabolic3(0, -2);
direct_tmatrix[7] = parabolic3(0, +2);
}
if(geometry == gHoroTris) {
ld r3 = sqrt(3);
direct_tmatrix[0] = xpush(-log(2)) * cspin(1,2, M_PI);
direct_tmatrix[1] = parabolic3(0, +r3/3) * xpush(-log(2));
direct_tmatrix[2] = parabolic3(-0.5, -r3/6) * xpush(-log(2));
direct_tmatrix[3] = parabolic3(+0.5, -r3/6) * xpush(-log(2));
direct_tmatrix[4] = parabolic3(0, -r3*2/3) * cspin(1,2, M_PI);
direct_tmatrix[5] = parabolic3(1, r3/3) * cspin(1,2,M_PI);
direct_tmatrix[6] = parabolic3(-1, r3/3) * cspin(1,2,M_PI);
}
if(geometry == gHoroRec) {
ld r2 = sqrt(2);
ld l = -log(2)/2;
ld z = hororec_scale;
direct_tmatrix[0] = parabolic3(0, -z) * xpush(l) * cspin(2,1,M_PI/2);
direct_tmatrix[1] = parabolic3(0, +z) * xpush(l) * cspin(2,1,M_PI/2);
direct_tmatrix[2] = parabolic3(+2*r2*z, 0);
direct_tmatrix[3] = parabolic3(0, +4*z);
direct_tmatrix[4] = parabolic3(-2*r2*z, 0);
direct_tmatrix[5] = parabolic3(0, -4*z);
}
if(geometry == gHoroHex) {
// also generated with the help of hexb.cpp
ld l = log(3)/2;
auto& t = direct_tmatrix;
t[0] = parabolic3(horohex_scale, 0) * xpush(-l) * cspin(1, 2, M_PI/2);
t[1] = cspin(1, 2, 2*M_PI/3) * t[0];
t[2] = cspin(1, 2, 4*M_PI/3) * t[0];
auto it = iso_inverse(t[0]);
t[5] = it * t[1] * t[1];
t[6] = it * t[5];
t[4] = it * t[6] * t[2] * t[0];
t[3] = it * t[4] * t[2];
t[7] = it * t[2];
t[8] = it * t[6] * t[0];
t[9] = it * t[4];
t[10] = it * t[6] * t[2];
t[11] = it * t[1];
if(debugflags & DF_GEOM)
for(int a=0; a<12; a++)
println(hlog, t[a]);
use_direct >>= 1;
}
for(int i=0; i<S7; i++) if(use_direct_for(i))
inverse_tmatrix[i] = iso_inverse(direct_tmatrix[i]);
}
#if MAXMDIM == 4
EX void queuecube(const shiftmatrix& V, ld size, color_t linecolor, color_t facecolor) {
ld yy = log(2) / 2;
const int STEP=3;
const ld MUL = 1. / STEP;
auto at = [&] (ld x, ld y, ld z) { curvepoint(parabolic3(size*x, size*y) * xpush0(size*yy*z)); };
for(int a:{-1,1}) {
for(ld t=-STEP; t<STEP; t++) at(a, 1,t*MUL);
for(ld t=-STEP; t<STEP; t++) at(a, -t*MUL,1);
for(ld t=-STEP; t<STEP; t++) at(a, -1,-t*MUL);
for(ld t=-STEP; t<STEP; t++) at(a, t*MUL,-1);
at(a, 1,-1);
queuecurve(V, linecolor, facecolor, PPR::LINE);
for(ld t=-STEP; t<STEP; t++) at(1,t*MUL,a);
for(ld t=-STEP; t<STEP; t++) at(-t*MUL,1,a);
for(ld t=-STEP; t<STEP; t++) at(-1,-t*MUL,a);
for(ld t=-STEP; t<STEP; t++) at(t*MUL,-1,a);
at(1,-1,a);
queuecurve(V, linecolor, facecolor, PPR::LINE);
for(ld t=-STEP; t<STEP; t++) at(1,a,t*MUL);
for(ld t=-STEP; t<STEP; t++) at(-t*MUL,a,1);
for(ld t=-STEP; t<STEP; t++) at(-1,a,-t*MUL);
for(ld t=-STEP; t<STEP; t++) at(t*MUL,a,-1);
at(1,a,-1);
queuecurve(V, linecolor, facecolor, PPR::LINE);
}
/*for(int a:{-1,1}) for(int b:{-1,1}) for(int c:{-1,1}) {
at(0,0,0); at(a,b,c); queuecurve(linecolor, facecolor, PPR::LINE);
}*/
}
#endif
EX transmatrix parabolic(ld u) {
return parabolic1(u * vid.binary_width / log(2) / 2);
}
EX transmatrix parabolic3(ld y, ld z) {
ld co = vid.binary_width / log(2) / 4;
return hr::parabolic13(y * co, z * co);
}
// on which horocycle are we
EX ld horo_level(hyperpoint h) {
h /= (1 + h[LDIM]);
h[0] -= 1;
h /= sqhypot_d(GDIM, h);
h[0] += .5;
return log(2) + log(-h[0]);
}
EX hyperpoint deparabolic3(hyperpoint h) {
h /= (1 + h[3]);
hyperpoint one = point3(1,0,0);
h -= one;
h /= sqhypot_d(3, h);
h[0] += .5;
ld co = vid.binary_width / log(2) / 8;
return point3(log(2) + log(-h[0]), h[1] / co, h[2] / co);
}
#if CAP_COMMANDLINE
auto bt_config = arg::add2("-btwidth", [] {arg::shift_arg_formula(vid.binary_width); });
#endif
EX bool pseudohept(cell *c) {
if(WDIM == 2)
return c->type & c->master->distance & 1;
else if(geometry == gHoroRec)
return c->c.spin(S7-1) == 0 && (c->master->distance & 1) && c->cmove(S7-1)->c.spin(S7-1) == 0;
else if(geometry == gHoroTris)
return c->c.spin(S7-1) == 0 && (c->master->distance & 1);
else
return (c->master->zebraval == 1) && (c->master->distance & 1);
}
EX pair<gp::loc, gp::loc> gpvalue(heptagon *h) {
int d = h->c.spin(S7-1);
if(d == 0) return make_pair(gp::loc(0,0), gp::loc(-1,0));
else return make_pair(gp::eudir((d-1)*2), gp::loc(1,0));
}
// distance in a triangular grid
EX int tridist(gp::loc v) {
using namespace gp;
int d = v.first - v.second;
int d0 = d % 3;
if(d0 == 1 || d0 == -2) return 1 + min(tridist(v - eudir(0)), min(tridist(v - eudir(2)), tridist(v - eudir(4))));
if(d0 == 2 || d0 == -1) return 1 + min(tridist(v + eudir(0)), min(tridist(v + eudir(2)), tridist(v + eudir(4))));
return length(v * loc(1,1)) * 2 / 3;
}
EX int equalize(heptagon*& c1, heptagon*& c2) {
int steps = 0;
int d1 = c1->distance;
int d2 = c2->distance;
while(d1 > d2) c1 = c1->cmove(S7-1), steps++, d1--;
while(d2 > d1) c2 = c2->cmove(S7-1), steps++, d2--;
return steps;
}
EX int celldistance3_tri(heptagon *c1, heptagon *c2) {
using namespace gp;
int steps = equalize(c1, c2);
vector<pair<loc, loc> > m1, m2;
while(c1 != c2) {
m2.push_back(gpvalue(c2));
m1.push_back(gpvalue(c1));
c1 = c1->cmove(S7-1);
c2 = c2->cmove(S7-1);
steps += 2;
}
loc T1(0,0), T2(0,0), inv1(1,0), inv2(1,0);
int xsteps = steps;
while(isize(m1)) {
xsteps -= 2;
inv1 = inv1 * m1.back().second;
inv2 = inv2 * m2.back().second;
T1 = T1 + T1 + m1.back().first * inv1;
T2 = T2 + T2 + m2.back().first * inv2;
m1.pop_back(); m2.pop_back();
loc T0 = T2 - T1;
if(T0.first > 3 || T0.second > 3 || T0.first < -3 || T0.second < -3) break;
steps = min(steps, xsteps + tridist(T0));
}
return steps;
}
EX int celldistance3_rec(heptagon *c1, heptagon *c2) {
int steps = equalize(c1, c2);
vector<int> dx;
while(c1 != c2) {
dx.push_back(c1->c.spin(S7-1) - c2->c.spin(S7-1));
c1 = c1->cmove(S7-1);
c2 = c2->cmove(S7-1);
steps += 2;
}
int xsteps = steps, sx = 0, sy = 0;
while(isize(dx)) {
xsteps -= 2;
tie(sx, sy) = make_pair(-sy, 2 * sx + dx.back());
dx.pop_back();
int ysteps = xsteps + abs(sx) + abs(sy);
if(ysteps < steps) steps = ysteps;
if(sx >= 8 || sx <= -8 || sy >= 8 || sy <= -8) break;
}
return steps;
}
EX int celldistance3_square(heptagon *c1, heptagon *c2) {
int steps = equalize(c1, c2);
vector<int> dx, dy;
while(c1 != c2) {
dx.push_back((c1->c.spin(S7-1) & 1) - (c2->c.spin(S7-1) & 1));
dy.push_back((c1->c.spin(S7-1) >> 1) - (c2->c.spin(S7-1) >> 1));
c1 = c1->cmove(S7-1);
c2 = c2->cmove(S7-1);
steps += 2;
}
int xsteps = steps, sx = 0, sy = 0;
while(isize(dx)) {
xsteps -= 2;
sx *= 2;
sy *= 2;
sx += dx.back(); sy += dy.back();
dx.pop_back(); dy.pop_back();
int ysteps = xsteps + abs(sx) + abs(sy);
if(ysteps < steps) steps = ysteps;
if(sx >= 8 || sx <= -8 || sy >= 8 || sy <= -8) break;
}
return steps;
}
// this algorithm is wrong: it never considers the "narrow gap" moves
EX int celldistance3_hex(heptagon *c1, heptagon *c2) {
int steps = equalize(c1, c2);
vector<int> d1, d2;
while(c1 != c2) {
d1.push_back(c1->c.spin(S7-1));
d2.push_back(c2->c.spin(S7-1));
c1 = c1->cmove(S7-1);
c2 = c2->cmove(S7-1);
steps += 2;
}
int xsteps = steps;
dynamicval<eGeometry> g(geometry, gEuclid);
transmatrix T = Id;
while(isize(d1)) {
xsteps -= 2;
T = euscalezoom(hpxy(0,sqrt(3))) * eupush(1,0) * spin(-d2.back() * 2 * M_PI/3) * T * spin(d1.back() * 2 * M_PI/3) * eupush(-1,0) * euscalezoom(hpxy(0,-1/sqrt(3)));
d1.pop_back(); d2.pop_back();
hyperpoint h = tC0(T);
int sx = int(floor(h[0] - h[1] / sqrt(3) + .5)) / 3;
int sy = int(floor(h[1] * 2 / sqrt(3) + .5)) / 3;
int ysteps = xsteps + euc::dist(sx, sy);
if(ysteps < steps) steps = ysteps;
if(sx >= 8 || sx <= -8 || sy >= 8 || sy <= -8) break;
}
return steps;
}
EX int celldistance3_approx(heptagon *c1, heptagon *c2) {
int d = 0;
while(true) {
if(d > 1000000) return d; /* sanity check */
if(c1 == c2) return d;
for(int i=0; i<c1->type; i++)
if(c1->move(i) == c2) return d + 1;
for(int i=0; i<c1->type; i++) {
heptagon *c3 = c1->move(i);
for(int j=0; j<c3->type; j++)
if(c3->move(j) == c2) return d+2;
}
if(c1->distance > c2->distance) c1=c1->cmove(updir()), d++;
else c2=c2->cmove(updir()), d++;
}
}