-
Notifications
You must be signed in to change notification settings - Fork 78
/
meson.ml
854 lines (753 loc) · 36.1 KB
/
meson.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
(* ========================================================================= *)
(* Version of the MESON procedure a la PTTP. Various search options. *)
(* *)
(* John Harrison, University of Cambridge Computer Laboratory *)
(* *)
(* (c) Copyright, University of Cambridge 1998 *)
(* (c) Copyright, John Harrison 1998-2007 *)
(* ========================================================================= *)
needs "canon.ml";;
(* ------------------------------------------------------------------------- *)
(* Some parameters controlling MESON behaviour. *)
(* ------------------------------------------------------------------------- *)
let meson_depth = ref false;; (* Use depth not inference bound. *)
let meson_prefine = ref true;; (* Use Plaisted's positive refinement. *)
let meson_dcutin = ref 1;; (* Min size for d-and-c optimization cut-in. *)
let meson_skew = ref 3;; (* Skew proof bias (one side is <= n / skew) *)
let meson_brand = ref false;; (* Use Brand transformation *)
let meson_split_limit = ref 8;; (* Limit of case splits before MESON proper *)
let meson_chatty = ref false;; (* Old-style verbose MESON output *)
(* ------------------------------------------------------------------------- *)
(* Prolog exception. *)
(* ------------------------------------------------------------------------- *)
exception Cut;;
(* ------------------------------------------------------------------------- *)
(* Shadow syntax for FOL terms in NNF. Functions and predicates have *)
(* numeric codes, and negation is done by negating the predicate code. *)
(* ------------------------------------------------------------------------- *)
type fol_term = Fvar of int
| Fnapp of int * fol_term list;;
type fol_atom = int * fol_term list;;
type fol_form = Atom of fol_atom
| Conj of fol_form * fol_form
| Disj of fol_form * fol_form
| Forallq of int * fol_form;;
(* ------------------------------------------------------------------------- *)
(* Type for recording a MESON proof tree. *)
(* ------------------------------------------------------------------------- *)
type fol_goal =
Subgoal of fol_atom * fol_goal list * (int * thm) *
int * (fol_term * int)list;;
(* ------------------------------------------------------------------------- *)
(* General MESON procedure, using assumptions and with settable limits. *)
(* ------------------------------------------------------------------------- *)
module Meson = struct
let offinc = 10000
and inferences = ref 0
(* ----------------------------------------------------------------------- *)
(* Negate a clause. *)
(* ----------------------------------------------------------------------- *)
let mk_negated (p,a) = -p,a
(* ----------------------------------------------------------------------- *)
(* Like partition, but with short-circuiting for special situation. *)
(* ----------------------------------------------------------------------- *)
let qpartition p m =
let rec qpartition l =
if l == m then raise Unchanged else
match l with
[] -> raise Unchanged
| (h::t) -> if p h then
try let yes,no = qpartition t in h::yes,no
with Unchanged -> [h],t
else
let yes,no = qpartition t in yes,h::no in
function l -> try qpartition l
with Unchanged -> [],l
(* ----------------------------------------------------------------------- *)
(* Translate a term (in NNF) into the shadow syntax. *)
(* ----------------------------------------------------------------------- *)
let reset_vars,fol_of_var,hol_of_var =
let vstore = ref []
and gstore = ref []
and vcounter = ref 0 in
let inc_vcounter() =
let n = !vcounter in
let m = n + 1 in
if m >= offinc then failwith "inc_vcounter: too many variables" else
(vcounter := m; n) in
let reset_vars() = vstore := []; gstore := []; vcounter := 0 in
let fol_of_var v =
let currentvars = !vstore in
try assoc v currentvars with Failure _ ->
let n = inc_vcounter() in
vstore := (v,n)::currentvars; n in
let hol_of_var v =
try rev_assoc v (!vstore)
with Failure _ -> rev_assoc v (!gstore) in
let hol_of_bumped_var v =
try hol_of_var v with Failure _ ->
let v' = v mod offinc in
let hv' = hol_of_var v' in
let gv = genvar(type_of hv') in
gstore := (gv,v)::(!gstore); gv in
reset_vars,fol_of_var,hol_of_bumped_var
let reset_consts,fol_of_const,hol_of_const =
let false_tm = `F` in
let cstore = ref ([]:(term * int)list)
and ccounter = ref 2 in
let reset_consts() = cstore := [false_tm,1]; ccounter := 2 in
let fol_of_const c =
let currentconsts = !cstore in
try assoc c currentconsts with Failure _ ->
let n = !ccounter in
ccounter := n + 1; cstore := (c,n)::currentconsts; n in
let hol_of_const c = rev_assoc c (!cstore) in
reset_consts,fol_of_const,hol_of_const
let rec fol_of_term env consts tm =
if is_var tm && not (mem tm consts) then
Fvar(fol_of_var tm)
else
let f,args = strip_comb tm in
if mem f env then failwith "fol_of_term: higher order" else
let ff = fol_of_const f in
Fnapp(ff,map (fol_of_term env consts) args)
let fol_of_atom env consts tm =
let f,args = strip_comb tm in
if mem f env then failwith "fol_of_atom: higher order" else
let ff = fol_of_const f in
ff,map (fol_of_term env consts) args
let fol_of_literal env consts tm =
try let tm' = dest_neg tm in
let p,a = fol_of_atom env consts tm' in
-p,a
with Failure _ -> fol_of_atom env consts tm
let rec fol_of_form env consts tm =
try let v,bod = dest_forall tm in
let fv = fol_of_var v in
let fbod = fol_of_form (v::env) (subtract consts [v]) bod in
Forallq(fv,fbod)
with Failure _ -> try
let l,r = dest_conj tm in
let fl = fol_of_form env consts l
and fr = fol_of_form env consts r in
Conj(fl,fr)
with Failure _ -> try
let l,r = dest_disj tm in
let fl = fol_of_form env consts l
and fr = fol_of_form env consts r in
Disj(fl,fr)
with Failure _ ->
Atom(fol_of_literal env consts tm)
(* ----------------------------------------------------------------------- *)
(* Further translation functions for HOL formulas. *)
(* ----------------------------------------------------------------------- *)
let rec hol_of_term tm =
match tm with
Fvar v -> hol_of_var v
| Fnapp(f,args) -> list_mk_comb(hol_of_const f,map hol_of_term args)
let hol_of_atom (p,args) =
list_mk_comb(hol_of_const p,map hol_of_term args)
let hol_of_literal (p,args) =
if p < 0 then mk_neg(hol_of_atom(-p,args))
else hol_of_atom (p,args)
(* ----------------------------------------------------------------------- *)
(* Versions of shadow syntax operations with variable bumping. *)
(* ----------------------------------------------------------------------- *)
let rec fol_free_in v tm =
match tm with
Fvar x -> x = v
| Fnapp(_,lis) -> exists (fol_free_in v) lis
let rec fol_subst theta tm =
match tm with
Fvar v -> rev_assocd v theta tm
| Fnapp(f,args) ->
let args' = qmap (fol_subst theta) args in
if args' == args then tm else Fnapp(f,args')
let fol_inst theta ((p,args) as at:fol_atom) =
let args' = qmap (fol_subst theta) args in
if args' == args then at else p,args'
let rec fol_subst_bump offset theta tm =
match tm with
Fvar v -> if v < offinc then
let v' = v + offset in
rev_assocd v' theta (Fvar(v'))
else
rev_assocd v theta tm
| Fnapp(f,args) ->
let args' = qmap (fol_subst_bump offset theta) args in
if args' == args then tm else Fnapp(f,args')
let fol_inst_bump offset theta ((p,args) as at:fol_atom) =
let args' = qmap (fol_subst_bump offset theta) args in
if args' == args then at else p,args'
(* ----------------------------------------------------------------------- *)
(* Main unification function, maintaining a "graph" instantiation. *)
(* We implicitly apply an offset to variables in the second term, so this *)
(* is not symmetric between the arguments. *)
(* ----------------------------------------------------------------------- *)
let rec istriv env x t =
match t with
Fvar y -> y = x ||
(try let t' = rev_assoc y env in istriv env x t'
with Failure "find" -> false)
| Fnapp(f,args) -> exists (istriv env x) args && failwith "cyclic"
let rec fol_unify offset tm1 tm2 sofar =
match tm1,tm2 with
Fnapp(f,fargs),Fnapp(g,gargs) ->
if f <> g then failwith "" else
itlist2 (fol_unify offset) fargs gargs sofar
| _,Fvar(x) ->
(let x' = x + offset in
try let tm2' = rev_assoc x' sofar in
fol_unify 0 tm1 tm2' sofar
with Failure "find" ->
if istriv sofar x' tm1 then sofar
else (tm1,x')::sofar)
| Fvar(x),_ ->
(try let tm1' = rev_assoc x sofar in
fol_unify offset tm1' tm2 sofar
with Failure "find" ->
let tm2' = fol_subst_bump offset [] tm2 in
if istriv sofar x tm2' then sofar
else (tm2',x)::sofar)
(* ----------------------------------------------------------------------- *)
(* Test for equality under the pending instantiations. *)
(* ----------------------------------------------------------------------- *)
let rec fol_eq insts tm1 tm2 =
tm1 == tm2 ||
match tm1,tm2 with
Fnapp(f,fargs),Fnapp(g,gargs) ->
f = g && forall2 (fol_eq insts) fargs gargs
| _,Fvar(x) ->
(try let tm2' = rev_assoc x insts in
fol_eq insts tm1 tm2'
with Failure "find" ->
try istriv insts x tm1 with Failure _ -> false)
| Fvar(x),_ ->
(try let tm1' = rev_assoc x insts in
fol_eq insts tm1' tm2
with Failure "find" ->
try istriv insts x tm2 with Failure _ -> false)
let fol_atom_eq insts (p1,args1) (p2,args2) =
p1 = p2 && forall2 (fol_eq insts) args1 args2
(* ----------------------------------------------------------------------- *)
(* Cacheing continuations. Very crude, but it works remarkably well. *)
(* ----------------------------------------------------------------------- *)
let cacheconts f =
let memory = ref [] in
fun (gg,(insts,offset,size) as input) ->
if exists (fun (_,(insts',_,size')) ->
insts = insts' && (size <= size' || !meson_depth))
(!memory)
then failwith "cachecont"
else memory := input::(!memory); f input
(* ----------------------------------------------------------------------- *)
(* Check ancestor list for repetition. *)
(* ----------------------------------------------------------------------- *)
let checkan insts (p,a) ancestors =
let p' = -p in
let t' = (p',a) in
try let ours = assoc p' ancestors in
if exists (fun u -> fol_atom_eq insts t' (snd(fst u))) ours
then failwith "checkan"
else ancestors
with Failure "find" -> ancestors
(* ----------------------------------------------------------------------- *)
(* Insert new goal's negation in ancestor clause, given refinement. *)
(* ----------------------------------------------------------------------- *)
let insertan insts (p,a) ancestors =
let p' = -p in
let t' = (p',a) in
let ourancp,otheranc =
try remove (fun (pr,_) -> pr = p') ancestors
with Failure _ -> (p',[]),ancestors in
let ouranc = snd ourancp in
if exists (fun u -> fol_atom_eq insts t' (snd(fst u))) ouranc
then failwith "insertan: loop"
else (p',(([],t'),(0,TRUTH))::ouranc)::otheranc
(* ----------------------------------------------------------------------- *)
(* Apply a multi-level "graph" instantiation. *)
(* ----------------------------------------------------------------------- *)
let rec fol_subst_partial insts tm =
match tm with
Fvar(v) -> (try let t = rev_assoc v insts in
fol_subst_partial insts t
with Failure "find" -> tm)
| Fnapp(f,args) -> Fnapp(f,map (fol_subst_partial insts) args)
(* ----------------------------------------------------------------------- *)
(* Tease apart local and global instantiations. *)
(* At the moment we also force a full evaluation; should eliminate this. *)
(* ----------------------------------------------------------------------- *)
let separate_insts offset oldinsts newinsts =
let locins,globins =
qpartition (fun (_,v) -> offset <= v) oldinsts newinsts in
if globins = oldinsts then
map (fun (t,x) -> fol_subst_partial newinsts t,x) locins,oldinsts
else
map (fun (t,x) -> fol_subst_partial newinsts t,x) locins,
map (fun (t,x) -> fol_subst_partial newinsts t,x) globins
(* ----------------------------------------------------------------------- *)
(* Perform basic MESON expansion. *)
(* ----------------------------------------------------------------------- *)
let meson_single_expand loffset rule ((g,ancestors),(insts,offset,size)) =
let (hyps,conc),tag = rule in
let allins = rev_itlist2 (fol_unify loffset) (snd g) (snd conc) insts in
let locin,globin = separate_insts offset insts allins in
let mk_ihyp h =
let h' = fol_inst_bump offset locin h in
h',checkan insts h' ancestors in
let newhyps = map mk_ihyp hyps in
inferences := !inferences + 1;
newhyps,(globin,offset+offinc,size-length hyps)
(* ----------------------------------------------------------------------- *)
(* Perform first basic expansion which allows continuation call. *)
(* ----------------------------------------------------------------------- *)
let meson_expand_cont loffset rules state cont =
tryfind
(fun r -> cont (snd r) (meson_single_expand loffset r state)) rules
(* ----------------------------------------------------------------------- *)
(* Try expansion and continuation call with ancestor or initial rule. *)
(* ----------------------------------------------------------------------- *)
let meson_expand rules ((g,ancestors),((insts,offset,size) as tup)) cont =
let pr = fst g in
let newancestors = insertan insts g ancestors in
let newstate = (g,newancestors),tup in
try if !meson_prefine && pr > 0 then failwith "meson_expand" else
let arules = assoc pr ancestors in
meson_expand_cont 0 arules newstate cont
with Cut -> failwith "meson_expand" | Failure _ ->
try let crules =
filter (fun ((h,_),_) -> length h <= size) (assoc pr rules) in
meson_expand_cont offset crules newstate cont
with Cut -> failwith "meson_expand"
| Failure _ -> failwith "meson_expand"
(* ----------------------------------------------------------------------- *)
(* Simple Prolog engine organizing search and backtracking. *)
(* ----------------------------------------------------------------------- *)
let expand_goal rules =
let rec expand_goal depth ((g,_),(insts,offset,size) as state) cont =
if depth < 0 then failwith "expand_goal: too deep" else
meson_expand rules state
(fun apprule (_,(pinsts,_,_) as newstate) ->
expand_goals (depth-1) newstate
(cacheconts(fun (gs,(newinsts,newoffset,newsize)) ->
let locin,globin = separate_insts offset pinsts newinsts in
let g' = Subgoal(g,gs,apprule,offset,locin) in
if globin = insts && gs = [] then
try cont(g',(globin,newoffset,size))
with Failure _ -> raise Cut
else
try cont(g',(globin,newoffset,newsize))
with Cut -> failwith "expand_goal"
| Failure _ -> failwith "expand_goal")))
and expand_goals depth (gl,(insts,offset,size as tup)) cont =
match gl with
[] -> cont ([],tup)
| [g] -> expand_goal depth (g,tup) (fun (g',stup) -> cont([g'],stup))
| gl -> if size >= !meson_dcutin then
let lsize = size / (!meson_skew) in
let rsize = size - lsize in
let lgoals,rgoals = chop_list (length gl / 2) gl in
try expand_goals depth (lgoals,(insts,offset,lsize))
(cacheconts(fun (lg',(i,off,n)) ->
expand_goals depth (rgoals,(i,off,n + rsize))
(cacheconts(fun (rg',ztup) -> cont (lg'@rg',ztup)))))
with Failure _ ->
expand_goals depth (rgoals,(insts,offset,lsize))
(cacheconts(fun (rg',(i,off,n)) ->
expand_goals depth (lgoals,(i,off,n + rsize))
(cacheconts (fun (lg',((_,_,fsize) as ztup)) ->
if n + rsize <= lsize + fsize
then failwith "repetition of demigoal pair"
else cont (lg'@rg',ztup)))))
else
let g::gs = gl in
expand_goal depth (g,tup)
(cacheconts(fun (g',stup) ->
expand_goals depth (gs,stup)
(cacheconts(fun (gs',ftup) -> cont(g'::gs',ftup))))) in
fun g maxdep maxinf cont ->
expand_goal maxdep (g,([],2 * offinc,maxinf)) cont
(* ----------------------------------------------------------------------- *)
(* With iterative deepening of inferences or depth. *)
(* ----------------------------------------------------------------------- *)
let solve_goal rules incdepth min max incsize =
let rec solve n g =
if n > max then failwith "solve_goal: Too deep" else
(if !meson_chatty && !verbose then
(Format.print_string
((string_of_int (!inferences))^" inferences so far. "^
"Searching with maximum size "^(string_of_int n)^".");
Format.print_newline())
else if !verbose then
(Format.print_string(string_of_int (!inferences)^"..");
Format.print_flush())
else ());
try let gi =
if incdepth then expand_goal rules g n 100000 (fun x -> x)
else expand_goal rules g 100000 n (fun x -> x) in
(if !meson_chatty && !verbose then
(Format.print_string
("Goal solved with "^(string_of_int (!inferences))^
" inferences.");
Format.print_newline())
else if !verbose then
(Format.print_string("solved at "^string_of_int (!inferences));
Format.print_newline())
else ());
gi
with Failure _ -> solve (n + incsize) g in
fun g -> solve min (g,[])
(* ----------------------------------------------------------------------- *)
(* Creation of tagged contrapositives from a HOL clause. *)
(* This includes any possible support clauses (1 = falsity). *)
(* The rules are partitioned into association lists. *)
(* ----------------------------------------------------------------------- *)
let fol_of_hol_clauses =
let eqt (a1,(b1,c1)) (a2, (b2,c2)) =
((a1 = a2) && (b1 = b2) && (equals_thm c1 c2)) in
let rec mk_contraposes n th used unused sofar =
match unused with
[] -> sofar
| h::t -> let nw = (map mk_negated (used @ t),h),(n,th) in
mk_contraposes (n + 1) th (used@[h]) t (nw::sofar) in
let fol_of_hol_clause th =
let lconsts = freesl (hyp th) in
let tm = concl th in
let hlits = disjuncts tm in
let flits = map (fol_of_literal [] lconsts) hlits in
let basics = mk_contraposes 0 th [] flits [] in
if forall (fun (p,_) -> p < 0) flits then
((map mk_negated flits,(1,[])),(-1,th))::basics
else basics in
fun thms ->
let rawrules = itlist (union' eqt o fol_of_hol_clause) thms [] in
let prs = setify (map (fst o snd o fst) rawrules) in
let prules =
map (fun t -> t,filter ((=) t o fst o snd o fst) rawrules) prs in
let srules = sort (fun (p,_) (q,_) -> abs(p) <= abs(q)) prules in
srules
(* ----------------------------------------------------------------------- *)
(* Optimize set of clauses; changing literal order complicates HOL stuff. *)
(* ----------------------------------------------------------------------- *)
let optimize_rules =
let optimize_clause_order cls =
sort (fun ((l1,_),_) ((l2,_),_) -> length l1 <= length l2) cls in
map (fun (a,b) -> a,optimize_clause_order b)
(* ----------------------------------------------------------------------- *)
(* Create a HOL contrapositive on demand, with a cache. *)
(* ----------------------------------------------------------------------- *)
let clear_contrapos_cache,make_hol_contrapos =
let DISJ_AC = AC DISJ_ACI
and imp_CONV = REWR_CONV(TAUT `a \/ b <=> ~b ==> a`)
and push_CONV =
GEN_REWRITE_CONV TOP_SWEEP_CONV
[TAUT `~(a \/ b) <=> ~a /\ ~b`; TAUT `~(~a) <=> a`]
and pull_CONV = GEN_REWRITE_CONV DEPTH_CONV
[TAUT `~a \/ ~b <=> ~(a /\ b)`]
and imf_CONV = REWR_CONV(TAUT `~p <=> p ==> F`) in
let memory = ref [] in
let clear_contrapos_cache() = memory := [] in
let make_hol_contrapos (n,th) =
let tm = concl th in
let key = (n,tm) in
try assoc key (!memory) with Failure _ ->
if n < 0 then
CONV_RULE (pull_CONV THENC imf_CONV) th
else
let djs = disjuncts tm in
let acth =
if n = 0 then th else
let ldjs,rdjs = chop_list n djs in
let ndjs = (hd rdjs)::(ldjs@(tl rdjs)) in
EQ_MP (DISJ_AC(mk_eq(tm,list_mk_disj ndjs))) th in
let fth =
if length djs = 1 then acth
else CONV_RULE (imp_CONV THENC push_CONV) acth in
(memory := (key,fth)::(!memory); fth) in
clear_contrapos_cache,make_hol_contrapos
(* ---------------------------------------------------------------------- *)
(* Handle trivial start/finish stuff. *)
(* ---------------------------------------------------------------------- *)
let finish_RULE =
GEN_REWRITE_RULE I
[TAUT `(~p ==> p) <=> p`; TAUT `(p ==> ~p) <=> ~p`]
(* ----------------------------------------------------------------------- *)
(* Translate back the saved proof into HOL. *)
(* ----------------------------------------------------------------------- *)
let meson_to_hol =
let hol_negate tm =
try dest_neg tm with Failure _ -> mk_neg tm in
let merge_inst (t,x) current =
(fol_subst current t,x)::current in
let rec meson_to_hol insts (Subgoal(g,gs,(n,th),offset,locin)) =
let newins = itlist merge_inst locin insts in
let g' = fol_inst newins g in
let hol_g = hol_of_literal g' in
let ths = map (meson_to_hol newins) gs in
let hth =
if equals_thm th TRUTH then ASSUME hol_g else
let cth = make_hol_contrapos(n,th) in
if ths = [] then cth else MATCH_MP cth (end_itlist CONJ ths) in
let ith = PART_MATCH I hth hol_g in
finish_RULE (DISCH (hol_negate(concl ith)) ith) in
meson_to_hol
(* ----------------------------------------------------------------------- *)
(* Create equality axioms for all the function and predicate symbols in *)
(* a HOL term. Not very efficient (but then neither is throwing them into *)
(* automated proof search!) *)
(* ----------------------------------------------------------------------- *)
let create_equality_axioms =
let eq_thms = (CONJUNCTS o prove)
(`(x:A = x) /\
(~(x:A = y) \/ ~(x = z) \/ (y = z))`,
REWRITE_TAC[] THEN ASM_CASES_TAC `x:A = y` THEN
ASM_REWRITE_TAC[] THEN CONV_TAC TAUT) in
let imp_elim_CONV = REWR_CONV
(TAUT `(a ==> b) <=> ~a \/ b`) in
let eq_elim_RULE =
MATCH_MP(TAUT `(a <=> b) ==> b \/ ~a`) in
let veq_tm = rator(rator(concl(hd eq_thms))) in
let create_equivalence_axioms (eq,_) =
let tyins = type_match (type_of veq_tm) (type_of eq) [] in
map (INST_TYPE tyins) eq_thms in
let rec tm_consts tm acc =
let fn,args = strip_comb tm in
if args = [] then acc
else itlist tm_consts args (insert (fn,length args) acc) in
let rec fm_consts tm ((preds,funs) as acc) =
try fm_consts(snd(dest_forall tm)) acc with Failure _ ->
try fm_consts(snd(dest_exists tm)) acc with Failure _ ->
try let l,r = dest_conj tm in fm_consts l (fm_consts r acc)
with Failure _ -> try
let l,r = dest_disj tm in fm_consts l (fm_consts r acc)
with Failure _ -> try
let l,r = dest_imp tm in fm_consts l (fm_consts r acc)
with Failure _ -> try
fm_consts (dest_neg tm) acc with Failure _ ->
try let l,r = dest_eq tm in
if type_of l = bool_ty
then fm_consts r (fm_consts l acc)
else failwith "atomic equality"
with Failure _ ->
let pred,args = strip_comb tm in
if args = [] then acc else
insert (pred,length args) preds,itlist tm_consts args funs in
let create_congruence_axiom pflag (tm,len) =
let atys,rty = splitlist (fun ty -> let op,l = dest_type ty in
if op = "fun" then hd l,hd(tl l)
else fail())
(type_of tm) in
let ctys = fst(chop_list len atys) in
let largs = map genvar ctys
and rargs = map genvar ctys in
let th1 = rev_itlist (C (curry MK_COMB)) (map (ASSUME o mk_eq)
(zip largs rargs)) (REFL tm) in
let th2 = if pflag then eq_elim_RULE th1 else th1 in
itlist (fun e th -> CONV_RULE imp_elim_CONV (DISCH e th)) (hyp th2) th2 in
fun tms -> let preds,funs = itlist fm_consts tms ([],[]) in
let eqs0,noneqs = partition
(fun (t,_) -> is_const t && fst(dest_const t) = "=") preds in
if eqs0 = [] then [] else
let pcongs = map (create_congruence_axiom true) noneqs
and fcongs = map (create_congruence_axiom false) funs in
let preds1,_ =
itlist fm_consts (map concl (pcongs @ fcongs)) ([],[]) in
let eqs1 = filter
(fun (t,_) -> is_const t && fst(dest_const t) = "=") preds1 in
let eqs = union eqs0 eqs1 in
let equivs =
itlist (union' equals_thm o create_equivalence_axioms)
eqs [] in
equivs@pcongs@fcongs
(* ----------------------------------------------------------------------- *)
(* Brand's transformation. *)
(* ----------------------------------------------------------------------- *)
let perform_brand_modification =
let rec subterms_irrefl lconsts tm acc =
if is_var tm || is_const tm then acc else
let fn,args = strip_comb tm in
itlist (subterms_refl lconsts) args acc
and subterms_refl lconsts tm acc =
if is_var tm then if mem tm lconsts then insert tm acc else acc
else if is_const tm then insert tm acc else
let fn,args = strip_comb tm in
itlist (subterms_refl lconsts) args (insert tm acc) in
let CLAUSIFY = CONV_RULE(REWR_CONV(TAUT `a ==> b <=> ~a \/ b`)) in
let rec BRAND tms th =
if tms = [] then th else
let tm = hd tms in
let gv = genvar (type_of tm) in
let eq = mk_eq(gv,tm) in
let th' = CLAUSIFY (DISCH eq (SUBS [SYM (ASSUME eq)] th))
and tms' = map (subst [gv,tm]) (tl tms) in
BRAND tms' th' in
let BRAND_CONGS th =
let lconsts = freesl (hyp th) in
let lits = disjuncts (concl th) in
let atoms = map (fun t -> try dest_neg t with Failure _ -> t) lits in
let eqs,noneqs = partition
(fun t -> try fst(dest_const(fst(strip_comb t))) = "="
with Failure _ -> false) atoms in
let acc = itlist (subterms_irrefl lconsts) noneqs [] in
let uts = itlist
(itlist (subterms_irrefl lconsts) o snd o strip_comb) eqs acc in
let sts = sort (fun s t -> not(free_in s t)) uts in
BRAND sts th in
let BRANDE th =
let tm = concl th in
let l,r = dest_eq tm in
let gv = genvar(type_of l) in
let eq = mk_eq(r,gv) in
CLAUSIFY(DISCH eq (EQ_MP (AP_TERM (rator tm) (ASSUME eq)) th)) in
let LDISJ_CASES th lth rth =
DISJ_CASES th (DISJ1 lth (concl rth)) (DISJ2 (concl lth) rth) in
let ASSOCIATE = CONV_RULE(REWR_CONV(GSYM DISJ_ASSOC)) in
let rec BRAND_TRANS th =
let tm = concl th in
try let l,r = dest_disj tm in
if is_eq l then
let lth = ASSUME l in
let lth1 = BRANDE lth
and lth2 = BRANDE (SYM lth)
and rth = BRAND_TRANS (ASSUME r) in
map (ASSOCIATE o LDISJ_CASES th lth1) rth @
map (ASSOCIATE o LDISJ_CASES th lth2) rth
else
let rth = BRAND_TRANS (ASSUME r) in
map (LDISJ_CASES th (ASSUME l)) rth
with Failure _ ->
if is_eq tm then [BRANDE th; BRANDE (SYM th)]
else [th] in
let find_eqs =
find_terms (fun t -> try fst(dest_const t) = "="
with Failure _ -> false) in
let REFLEXATE ths =
let eqs = itlist (union o find_eqs o concl) ths [] in
let tys = map (hd o snd o dest_type o snd o dest_const) eqs in
let gvs = map genvar tys in
itlist (fun v acc -> (REFL v)::acc) gvs ths in
fun ths ->
if exists (can (find_term is_eq o concl)) ths then
let ths' = map BRAND_CONGS ths in
let ths'' = itlist (union' equals_thm o BRAND_TRANS) ths' [] in
REFLEXATE ths''
else ths
(* ----------------------------------------------------------------------- *)
(* Push duplicated copies of poly theorems to match existing assumptions. *)
(* ----------------------------------------------------------------------- *)
let POLY_ASSUME_TAC =
let rec uniq' eq =
fun l ->
match l with
x::(y::_ as t) -> let t' = uniq' eq t in
if eq x y then t' else
if t'==t then l else x::t'
| _ -> l in
let setify' le eq s = uniq' eq (sort le s) in
let rec grab_constants tm acc =
if is_forall tm || is_exists tm then grab_constants (body(rand tm)) acc
else if is_iff tm || is_imp tm || is_conj tm || is_disj tm then
grab_constants (rand tm) (grab_constants (lhand tm) acc)
else if is_neg tm then grab_constants (rand tm) acc
else union (find_terms is_const tm) acc in
let match_consts (tm1,tm2) =
let s1,ty1 = dest_const tm1
and s2,ty2 = dest_const tm2 in
if s1 = s2 then type_match ty1 ty2 []
else failwith "match_consts" in
let polymorph mconsts th =
let tvs = subtract (type_vars_in_term (concl th))
(unions (map type_vars_in_term (hyp th))) in
if tvs = [] then [th] else
let pconsts = grab_constants (concl th) [] in
let tyins = mapfilter match_consts
(allpairs (fun x y -> x,y) pconsts mconsts) in
let ths' =
setify' (fun th th' -> dest_thm th <= dest_thm th')
equals_thm (mapfilter (C INST_TYPE th) tyins) in
if ths' = [] then
(warn true "No useful-looking instantiations of lemma"; [th])
else ths' in
let rec polymorph_all mconsts ths acc =
if ths = [] then acc else
let ths' = polymorph mconsts (hd ths) in
let mconsts' = itlist grab_constants (map concl ths') mconsts in
polymorph_all mconsts' (tl ths) (union' equals_thm ths' acc) in
fun ths (asl,w as gl) ->
let mconsts = itlist (grab_constants o concl o snd) asl [] in
let ths' = polymorph_all mconsts ths [] in
MAP_EVERY ASSUME_TAC ths' gl
(* ----------------------------------------------------------------------- *)
(* Basic HOL MESON procedure. *)
(* ----------------------------------------------------------------------- *)
let SIMPLE_MESON_REFUTE min max inc ths =
clear_contrapos_cache();
inferences := 0;
let old_dcutin = !meson_dcutin in
if !meson_depth then meson_dcutin := 100001 else ();
let ths' = if !meson_brand then perform_brand_modification ths
else ths @ create_equality_axioms (map concl ths) in
let rules = optimize_rules(fol_of_hol_clauses ths') in
let proof,(insts,_,_) =
solve_goal rules (!meson_depth) min max inc (1,[]) in
meson_dcutin := old_dcutin;
meson_to_hol insts proof
let CONJUNCTS_THEN' ttac cth =
ttac(CONJUNCT1 cth) THEN ttac(CONJUNCT2 cth)
let PURE_MESON_TAC min max inc gl =
reset_vars(); reset_consts();
(FIRST_ASSUM CONTR_TAC ORELSE
W(ACCEPT_TAC o SIMPLE_MESON_REFUTE min max inc o map snd o fst)) gl
let QUANT_BOOL_CONV =
PURE_REWRITE_CONV[FORALL_BOOL_THM; EXISTS_BOOL_THM; COND_CLAUSES;
NOT_CLAUSES; IMP_CLAUSES; AND_CLAUSES; OR_CLAUSES;
EQ_CLAUSES; FORALL_SIMP; EXISTS_SIMP]
let rec SPLIT_TAC n g =
((FIRST_X_ASSUM(CONJUNCTS_THEN' ASSUME_TAC) THEN SPLIT_TAC n) ORELSE
(if n > 0 then FIRST_X_ASSUM DISJ_CASES_TAC THEN SPLIT_TAC (n - 1)
else NO_TAC) ORELSE
ALL_TAC) g
end;;
(* ------------------------------------------------------------------------- *)
(* Basic MESON tactic with settable parameters. *)
(* ------------------------------------------------------------------------- *)
let GEN_MESON_TAC min max step ths =
REFUTE_THEN ASSUME_TAC THEN
Meson.POLY_ASSUME_TAC (map GEN_ALL ths) THEN
W(MAP_EVERY(UNDISCH_TAC o concl o snd) o fst) THEN
SELECT_ELIM_TAC THEN
W(fun (asl,w) -> MAP_EVERY (fun v -> SPEC_TAC(v,v)) (frees w)) THEN
CONV_TAC(PRESIMP_CONV THENC
TOP_DEPTH_CONV BETA_CONV THENC
LAMBDA_ELIM_CONV THENC
CONDS_CELIM_CONV THENC
Meson.QUANT_BOOL_CONV) THEN
REPEAT(GEN_TAC ORELSE DISCH_TAC) THEN
REFUTE_THEN ASSUME_TAC THEN
RULE_ASSUM_TAC(CONV_RULE(NNF_CONV THENC SKOLEM_CONV)) THEN
REPEAT (FIRST_X_ASSUM CHOOSE_TAC) THEN
ASM_FOL_TAC THEN
Meson.SPLIT_TAC (!meson_split_limit) THEN
RULE_ASSUM_TAC(CONV_RULE(PRENEX_CONV THENC WEAK_CNF_CONV)) THEN
RULE_ASSUM_TAC(repeat
(fun th -> SPEC(genvar(type_of(fst(dest_forall(concl th))))) th)) THEN
REPEAT (FIRST_X_ASSUM (Meson.CONJUNCTS_THEN' ASSUME_TAC)) THEN
RULE_ASSUM_TAC(CONV_RULE(ASSOC_CONV DISJ_ASSOC)) THEN
REPEAT (FIRST_X_ASSUM SUBST_VAR_TAC) THEN
Meson.PURE_MESON_TAC min max step;;
(* ------------------------------------------------------------------------- *)
(* Common cases. *)
(* ------------------------------------------------------------------------- *)
let ASM_MESON_TAC = GEN_MESON_TAC 0 50 1;;
let MESON_TAC ths = POP_ASSUM_LIST(K ALL_TAC) THEN ASM_MESON_TAC ths;;
(* ------------------------------------------------------------------------- *)
(* Also introduce a rule. *)
(* ------------------------------------------------------------------------- *)
let MESON ths tm =
let th = TAC_PROOF(([],tm),MESON_TAC ths) in
let asl,tm' = dest_thm th in
if asl <> [] && not(subset asl (unions (map hyp ths)))
then failwith "MESON: too many assumptions in result"
else if tm' = tm then th else
try EQ_MP (ALPHA tm' tm) th
with Failure _ -> failwith "MESON: the wrong result";;