-
Notifications
You must be signed in to change notification settings - Fork 78
/
class.ml
executable file
·490 lines (394 loc) · 19.7 KB
/
class.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
(* ========================================================================= *)
(* Extensional, classical reasoning with AC starts now! *)
(* *)
(* John Harrison, University of Cambridge Computer Laboratory *)
(* *)
(* (c) Copyright, University of Cambridge 1998 *)
(* (c) Copyright, John Harrison 1998-2007 *)
(* ========================================================================= *)
needs "ind_defs.ml";;
(* ------------------------------------------------------------------------- *)
(* Eta-axiom, corresponding conversion, and extensionality. *)
(* ------------------------------------------------------------------------- *)
let ETA_AX = new_axiom
`!t:A->B. (\x. t x) = t`;;
let ETA_CONV =
let t = `t:A->B` in
let pth = prove(`(\x. (t:A->B) x) = t`,MATCH_ACCEPT_TAC ETA_AX) in
fun tm ->
try let bv,bod = dest_abs tm in
let l,r = dest_comb bod in
if r = bv && not (vfree_in bv l) then
TRANS (REFL tm) (PINST [type_of bv,aty; type_of bod,bty] [l,t] pth)
else fail()
with Failure _ -> failwith "ETA_CONV";;
let EQ_EXT = prove
(`!(f:A->B) g. (!x. f x = g x) ==> f = g`,
REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o ABS `x:A` o SPEC `x:A`) THEN
REWRITE_TAC[ETA_AX]);;
let FUN_EQ_THM = prove
(`!(f:A->B) g. f = g <=> (!x. f x = g x)`,
REPEAT GEN_TAC THEN EQ_TAC THENL
[DISCH_THEN SUBST1_TAC THEN GEN_TAC THEN REFL_TAC;
MATCH_ACCEPT_TAC EQ_EXT]);;
(* ------------------------------------------------------------------------- *)
(* Indefinite descriptor (giving AC). *)
(* ------------------------------------------------------------------------- *)
new_constant("@",`:(A->bool)->A`);;
parse_as_binder "@";;
let is_select = is_binder "@";;
let dest_select = dest_binder "@";;
let mk_select = mk_binder "@";;
let SELECT_AX = new_axiom
`!P (x:A). P x ==> P((@) P)`;;
(* ------------------------------------------------------------------------- *)
(* Useful for compatibility. (The old EXISTS_DEF.) *)
(* ------------------------------------------------------------------------- *)
let EXISTS_THM = prove
(`(?) = \P:A->bool. P ((@) P)`,
MATCH_MP_TAC EQ_EXT THEN BETA_TAC THEN X_GEN_TAC `P:A->bool` THEN
GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [GSYM ETA_AX] THEN
EQ_TAC THENL
[DISCH_THEN(CHOOSE_THEN MP_TAC) THEN MATCH_ACCEPT_TAC SELECT_AX;
DISCH_TAC THEN EXISTS_TAC `((@) P):A` THEN POP_ASSUM ACCEPT_TAC]);;
(* ------------------------------------------------------------------------- *)
(* Rules and so on for the select operator. *)
(* ------------------------------------------------------------------------- *)
let SELECT_RULE =
let P = `P:A->bool` in
let pth = prove
(`(?) (P:A->bool) ==> P((@) P)`,
SIMP_TAC[SELECT_AX; ETA_AX]) in
fun th ->
try let abs = rand(concl th) in
let ty = type_of(bndvar abs) in
CONV_RULE BETA_CONV (MP (PINST [ty,aty] [abs,P] pth) th)
with Failure _ -> failwith "SELECT_RULE";;
let SELECT_CONV =
let P = `P:A->bool` in
let pth = prove
(`(P:A->bool)((@) P) = (?) P`,
REWRITE_TAC[EXISTS_THM] THEN BETA_TAC THEN REFL_TAC) in
fun tm ->
try let is_epsok t = is_select t &&
let bv,bod = dest_select t in
aconv tm (vsubst [t,bv] bod) in
let pickeps = find_term is_epsok tm in
let abs = rand pickeps in
let ty = type_of (bndvar abs) in
CONV_RULE (LAND_CONV BETA_CONV) (PINST [ty,aty] [abs,P] pth)
with Failure _ -> failwith "SELECT_CONV";;
(* ------------------------------------------------------------------------- *)
(* Some basic theorems. *)
(* ------------------------------------------------------------------------- *)
let SELECT_REFL = prove
(`!x:A. (@y. y = x) = x`,
GEN_TAC THEN CONV_TAC SELECT_CONV THEN
EXISTS_TAC `x:A` THEN REFL_TAC);;
let SELECT_UNIQUE = prove
(`!P x. (!y:A. P y = (y = x)) ==> ((@) P = x)`,
REPEAT STRIP_TAC THEN
GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [GSYM ETA_AX] THEN
ASM_REWRITE_TAC[SELECT_REFL]);;
extend_basic_rewrites [SELECT_REFL];;
(* ------------------------------------------------------------------------- *)
(* Now we can derive type definitions from existence; check benignity. *)
(* ------------------------------------------------------------------------- *)
let the_type_definitions = ref ([]:((string*string*string)*(thm*thm))list);;
let new_type_definition tyname (absname,repname) th =
try let th',tth' = assoc (tyname,absname,repname) (!the_type_definitions) in
if concl th' <> concl th then failwith "" else
(warn true "Benign redefinition of type"; tth')
with Failure _ ->
let th0 =
CONV_RULE (RATOR_CONV (REWR_CONV EXISTS_THM) THENC BETA_CONV) th in
let th1,th2 = new_basic_type_definition tyname (absname,repname) th0 in
let tth = CONJ (GEN_ALL th1)
(GEN_ALL (CONV_RULE(LAND_CONV (TRY_CONV BETA_CONV)) th2)) in
the_type_definitions := ((tyname,absname,repname),(th,tth))::
(!the_type_definitions);
tth;;
(* ------------------------------------------------------------------------- *)
(* Derive excluded middle. The proof is an optimization due to Mark Adams of *)
(* the original Diaconescu proof as presented in Beeson's book. *)
(* ------------------------------------------------------------------------- *)
let EXCLUDED_MIDDLE = prove
(`!t. t \/ ~t`,
GEN_TAC THEN SUBGOAL_THEN
`(((@x. (x <=> F) \/ t) <=> F) \/ t) /\ (((@x. (x <=> T) \/ t) <=> T) \/ t)`
MP_TAC THENL
[CONJ_TAC THEN CONV_TAC SELECT_CONV THENL
[EXISTS_TAC `F`; EXISTS_TAC `T`] THEN
DISJ1_TAC THEN REFL_TAC;
DISCH_THEN(STRIP_ASSUME_TAC o GSYM) THEN
TRY(DISJ1_TAC THEN FIRST_ASSUM ACCEPT_TAC) THEN
DISJ2_TAC THEN DISCH_TAC THEN MP_TAC(ITAUT `~(T <=> F)`) THEN
PURE_ONCE_ASM_REWRITE_TAC[] THEN
ASM_REWRITE_TAC[ITAUT `p \/ T <=> T`]]);;
let BOOL_CASES_AX = prove
(`!t. (t <=> T) \/ (t <=> F)`,
GEN_TAC THEN DISJ_CASES_TAC(SPEC `t:bool` EXCLUDED_MIDDLE) THEN
ASM_REWRITE_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Classically based tactics. (See also COND_CASES_TAC later on.) *)
(* ------------------------------------------------------------------------- *)
let BOOL_CASES_TAC p = STRUCT_CASES_TAC (SPEC p BOOL_CASES_AX);;
let ASM_CASES_TAC t = DISJ_CASES_TAC(SPEC t EXCLUDED_MIDDLE);;
(* ------------------------------------------------------------------------- *)
(* Set up a reasonable tautology checker for classical logic. *)
(* ------------------------------------------------------------------------- *)
let TAUT =
let PROP_REWRITE_TAC = REWRITE_TAC[] in
let RTAUT_TAC (asl,w) =
let ok t = type_of t = bool_ty && can (find_term is_var) t && free_in t w in
(PROP_REWRITE_TAC THEN
W((fun t1 t2 -> t1 THEN t2) (REWRITE_TAC[]) o BOOL_CASES_TAC o
hd o sort free_in o find_terms ok o snd)) (asl,w) in
let TAUT_TAC = REPEAT(GEN_TAC ORELSE CONJ_TAC) THEN REPEAT RTAUT_TAC in
fun tm -> prove(tm,TAUT_TAC);;
(* ------------------------------------------------------------------------- *)
(* A few useful classical tautologies. *)
(* ------------------------------------------------------------------------- *)
let DE_MORGAN_THM = TAUT
`!t1 t2. (~(t1 /\ t2) <=> ~t1 \/ ~t2) /\ (~(t1 \/ t2) <=> ~t1 /\ ~t2)`;;
let NOT_CLAUSES =
TAUT `(!t. ~ ~t <=> t) /\ (~T <=> F) /\ (~F <=> T)`;;
let NOT_IMP = TAUT `!t1 t2. ~(t1 ==> t2) <=> t1 /\ ~t2`;;
let CONTRAPOS_THM = TAUT `!t1 t2. (~t1 ==> ~t2) <=> (t2 ==> t1)`;;
extend_basic_rewrites [CONJUNCT1 NOT_CLAUSES];;
(* ------------------------------------------------------------------------- *)
(* Some classically based rules. *)
(* ------------------------------------------------------------------------- *)
let CCONTR =
let P = `P:bool` in
let pth = TAUT `(~P ==> F) ==> P` in
fun tm th ->
try let tm' = mk_neg tm in
MP (INST [tm,P] pth) (DISCH tm' th)
with Failure _ -> failwith "CCONTR";;
let CONTRAPOS_CONV =
let a = `a:bool` and b = `b:bool` in
let pth = TAUT `(a ==> b) <=> (~b ==> ~a)` in
fun tm ->
try let P,Q = dest_imp tm in
INST [P,a; Q,b] pth
with Failure _ -> failwith "CONTRAPOS_CONV";;
(* ------------------------------------------------------------------------- *)
(* A classicalal "refutation" tactic. *)
(* ------------------------------------------------------------------------- *)
let REFUTE_THEN =
let f_tm = `F`
and conv = REWR_CONV(TAUT `p <=> ~p ==> F`) in
fun ttac (asl,w as gl) ->
if w = f_tm then ALL_TAC gl
else if is_neg w then DISCH_THEN ttac gl
else (CONV_TAC conv THEN DISCH_THEN ttac) gl;;
(* ------------------------------------------------------------------------- *)
(* Infinite de Morgan laws. *)
(* ------------------------------------------------------------------------- *)
let NOT_EXISTS_THM = prove
(`!P. ~(?x:A. P x) <=> (!x. ~(P x))`,
GEN_TAC THEN EQ_TAC THEN DISCH_TAC THENL
[GEN_TAC THEN DISCH_TAC THEN UNDISCH_TAC `~(?x:A. P x)` THEN
REWRITE_TAC[] THEN EXISTS_TAC `x:A` THEN POP_ASSUM ACCEPT_TAC;
DISCH_THEN(CHOOSE_THEN MP_TAC) THEN ASM_REWRITE_TAC[]]);;
let EXISTS_NOT_THM = prove
(`!P. (?x:A. ~(P x)) <=> ~(!x. P x)`,
ONCE_REWRITE_TAC[TAUT `(a <=> ~b) <=> (~a <=> b)`] THEN
REWRITE_TAC[NOT_EXISTS_THM]);;
let NOT_FORALL_THM = prove
(`!P. ~(!x. P x) <=> (?x:A. ~(P x))`,
MATCH_ACCEPT_TAC(GSYM EXISTS_NOT_THM));;
let FORALL_NOT_THM = prove
(`!P. (!x. ~(P x)) <=> ~(?x:A. P x)`,
MATCH_ACCEPT_TAC(GSYM NOT_EXISTS_THM));;
(* ------------------------------------------------------------------------- *)
(* Expand quantification over Booleans. *)
(* ------------------------------------------------------------------------- *)
let FORALL_BOOL_THM = prove
(`(!b. P b) <=> P T /\ P F`,
EQ_TAC THEN DISCH_TAC THEN ASM_REWRITE_TAC[] THEN
GEN_TAC THEN BOOL_CASES_TAC `b:bool` THEN ASM_REWRITE_TAC[]);;
let EXISTS_BOOL_THM = prove
(`(?b. P b) <=> P T \/ P F`,
MATCH_MP_TAC(TAUT `(~p <=> ~q) ==> (p <=> q)`) THEN
REWRITE_TAC[DE_MORGAN_THM; NOT_EXISTS_THM; FORALL_BOOL_THM]);;
(* ------------------------------------------------------------------------- *)
(* Universal quantifier and disjunction *)
(* ------------------------------------------------------------------------- *)
let LEFT_FORALL_OR_THM = prove
(`!P Q. (!x:A. P x \/ Q) <=> (!x. P x) \/ Q`,
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[TAUT `(a <=> b) <=> (~a <=> ~b)`] THEN
REWRITE_TAC[NOT_FORALL_THM; DE_MORGAN_THM; LEFT_EXISTS_AND_THM]);;
let RIGHT_FORALL_OR_THM = prove
(`!P Q. (!x:A. P \/ Q x) <=> P \/ (!x. Q x)`,
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[TAUT `(a <=> b) <=> (~a <=> ~b)`] THEN
REWRITE_TAC[NOT_FORALL_THM; DE_MORGAN_THM; RIGHT_EXISTS_AND_THM]);;
let LEFT_OR_FORALL_THM = prove
(`!P Q. (!x:A. P x) \/ Q <=> (!x. P x \/ Q)`,
MATCH_ACCEPT_TAC(GSYM LEFT_FORALL_OR_THM));;
let RIGHT_OR_FORALL_THM = prove
(`!P Q. P \/ (!x:A. Q x) <=> (!x. P \/ Q x)`,
MATCH_ACCEPT_TAC(GSYM RIGHT_FORALL_OR_THM));;
(* ------------------------------------------------------------------------- *)
(* Implication and quantifiers. *)
(* ------------------------------------------------------------------------- *)
let LEFT_IMP_FORALL_THM = prove
(`!P Q. ((!x:A. P x) ==> Q) <=> (?x. P x ==> Q)`,
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[TAUT `(a <=> b) <=> (~a <=> ~b)`] THEN
REWRITE_TAC[NOT_EXISTS_THM; NOT_IMP; LEFT_AND_FORALL_THM]);;
let LEFT_EXISTS_IMP_THM = prove
(`!P Q. (?x. P x ==> Q) <=> ((!x:A. P x) ==> Q)`,
MATCH_ACCEPT_TAC(GSYM LEFT_IMP_FORALL_THM));;
let RIGHT_IMP_EXISTS_THM = prove
(`!P Q. (P ==> ?x:A. Q x) <=> (?x:A. P ==> Q x)`,
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[TAUT `(a <=> b) <=> (~a <=> ~b)`] THEN
REWRITE_TAC[NOT_EXISTS_THM; NOT_IMP; RIGHT_AND_FORALL_THM]);;
let RIGHT_EXISTS_IMP_THM = prove
(`!P Q. (?x:A. P ==> Q x) <=> (P ==> ?x:A. Q x)`,
MATCH_ACCEPT_TAC(GSYM RIGHT_IMP_EXISTS_THM));;
(* ------------------------------------------------------------------------- *)
(* The conditional. *)
(* ------------------------------------------------------------------------- *)
let COND_DEF = new_definition
`COND = \t t1 t2. @x:A. ((t <=> T) ==> (x = t1)) /\
((t <=> F) ==> (x = t2))`;;
let COND_CLAUSES = prove
(`!(t1:A) t2. ((if T then t1 else t2) = t1) /\
((if F then t1 else t2) = t2)`,
REWRITE_TAC[COND_DEF]);;
let is_cond tm =
try fst(dest_const(rator(rator (rator tm)))) = "COND"
with Failure _ -> false;;
let mk_cond (b,x,y) =
try let c = mk_const("COND",[type_of x,aty]) in
mk_comb(mk_comb(mk_comb(c,b),x),y)
with Failure _ -> failwith "mk_cond";;
let dest_cond tm =
try let tm1,y = dest_comb tm in
let tm2,x = dest_comb tm1 in
let c,b = dest_comb tm2 in
if fst(dest_const c) = "COND" then (b,(x,y)) else fail()
with Failure _ -> failwith "dest_cond";;
extend_basic_rewrites [COND_CLAUSES];;
let COND_EXPAND = prove
(`!b t1 t2. (if b then t1 else t2) <=> (~b \/ t1) /\ (b \/ t2)`,
REPEAT GEN_TAC THEN BOOL_CASES_TAC `b:bool` THEN
REWRITE_TAC[]);;
let COND_ID = prove
(`!b (t:A). (if b then t else t) = t`,
REPEAT GEN_TAC THEN BOOL_CASES_TAC `b:bool` THEN REWRITE_TAC[]);;
let COND_RAND = prove
(`!b (f:A->B) x y. f (if b then x else y) = (if b then f x else f y)`,
REPEAT GEN_TAC THEN BOOL_CASES_TAC `b:bool` THEN REWRITE_TAC[]);;
let COND_RATOR = prove
(`!b (f:A->B) g x. (if b then f else g)(x) = (if b then f x else g x)`,
REPEAT GEN_TAC THEN BOOL_CASES_TAC `b:bool` THEN REWRITE_TAC[]);;
let COND_ABS = prove
(`!b (f:A->B) g. (\x. if b then f x else g x) = (if b then f else g)`,
REPEAT GEN_TAC THEN BOOL_CASES_TAC `b:bool` THEN REWRITE_TAC[ETA_AX]);;
let COND_SWAP = prove
(`!p x y:A. (if ~p then x else y) = (if p then y else x)`,
REPEAT GEN_TAC THEN BOOL_CASES_TAC `p:bool` THEN REWRITE_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Redefine TAUT to freeze in the rewrites including COND. *)
(* ------------------------------------------------------------------------- *)
let TAUT =
let PROP_REWRITE_TAC = REWRITE_TAC[] in
let RTAUT_TAC (asl,w) =
let ok t = type_of t = bool_ty && can (find_term is_var) t && free_in t w in
(PROP_REWRITE_TAC THEN
W((fun t1 t2 -> t1 THEN t2) (REWRITE_TAC[]) o BOOL_CASES_TAC o
hd o sort free_in o find_terms ok o snd)) (asl,w) in
let TAUT_TAC = REPEAT(GEN_TAC ORELSE CONJ_TAC) THEN REPEAT RTAUT_TAC in
fun tm ->
try prove(tm,TAUT_TAC)
with Failure _ ->
failwith ("TAUT `" ^ (string_of_term tm) ^ "`: cannot solve");;
(* ------------------------------------------------------------------------- *)
(* Throw monotonicity in. *)
(* ------------------------------------------------------------------------- *)
let MONO_COND = prove
(`(A ==> B) /\ (C ==> D) ==> (if b then A else C) ==> (if b then B else D)`,
STRIP_TAC THEN BOOL_CASES_TAC `b:bool` THEN
ASM_REWRITE_TAC[]);;
monotonicity_theorems := MONO_COND::(!monotonicity_theorems);;
(* ------------------------------------------------------------------------- *)
(* Tactic for splitting over an arbitrarily chosen conditional. *)
(* ------------------------------------------------------------------------- *)
let COND_ELIM_THM = prove
(`(P:A->bool) (if c then x else y) <=> (c ==> P x) /\ (~c ==> P y)`,
BOOL_CASES_TAC `c:bool` THEN REWRITE_TAC[]);;
let COND_ELIM_CONV = HIGHER_REWRITE_CONV[COND_ELIM_THM] true;;
let (COND_CASES_TAC :tactic) =
let DENEG_RULE = GEN_REWRITE_RULE I [TAUT `~ ~ p <=> p`] in
CONV_TAC COND_ELIM_CONV THEN CONJ_TAC THENL
[DISCH_THEN(fun th -> ASSUME_TAC th THEN SUBST1_TAC(EQT_INTRO th));
DISCH_THEN(fun th -> try let th' = DENEG_RULE th in
ASSUME_TAC th' THEN SUBST1_TAC(EQT_INTRO th')
with Failure _ ->
ASSUME_TAC th THEN SUBST1_TAC(EQF_INTRO th))];;
(* ------------------------------------------------------------------------- *)
(* Skolemization. *)
(* ------------------------------------------------------------------------- *)
let SKOLEM_THM = prove
(`!P. (!x:A. ?y:B. P x y) <=> (?y. !x. P x (y x))`,
REPEAT(STRIP_TAC ORELSE EQ_TAC) THENL
[EXISTS_TAC `\x:A. @y:B. P x y` THEN GEN_TAC THEN
BETA_TAC THEN CONV_TAC SELECT_CONV;
EXISTS_TAC `(y:A->B) x`] THEN
POP_ASSUM MATCH_ACCEPT_TAC);;
let SKOLEM_THM_GEN = prove
(`!P R. (!x:A. P x ==> ?y:B. R x y) <=> (?f. !x. P x ==> R x (f x))`,
REWRITE_TAC[RIGHT_IMP_EXISTS_THM; SKOLEM_THM]);;
(* ------------------------------------------------------------------------- *)
(* NB: this one is true intutionistically and intensionally. *)
(* ------------------------------------------------------------------------- *)
let UNIQUE_SKOLEM_ALT = prove
(`!P:A->B->bool. (!x. ?!y. P x y) <=> ?f. !x y. P x y <=> (f x = y)`,
GEN_TAC THEN REWRITE_TAC[EXISTS_UNIQUE_ALT; SKOLEM_THM]);;
(* ------------------------------------------------------------------------- *)
(* and this one intuitionistically and extensionally. *)
(* ------------------------------------------------------------------------- *)
let UNIQUE_SKOLEM_THM = prove
(`!P. (!x:A. ?!y:B. P x y) <=> (?!f. !x. P x (f x))`,
GEN_TAC THEN REWRITE_TAC[EXISTS_UNIQUE_THM; SKOLEM_THM; FORALL_AND_THM] THEN
EQ_TAC THEN DISCH_THEN(CONJUNCTS_THEN ASSUME_TAC) THEN
ASM_REWRITE_TAC[] THENL
[REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[FUN_EQ_THM] THEN
X_GEN_TAC `x:A` THEN FIRST_ASSUM MATCH_MP_TAC THEN
EXISTS_TAC `x:A` THEN ASM_REWRITE_TAC[];
MAP_EVERY X_GEN_TAC [`x:A`; `y1:B`; `y2:B`] THEN STRIP_TAC THEN
FIRST_ASSUM(X_CHOOSE_TAC `f:A->B`) THEN
SUBGOAL_THEN `(\z. if z = x then y1 else (f:A->B) z) =
(\z. if z = x then y2 else (f:A->B) z)` MP_TAC THENL
[FIRST_ASSUM MATCH_MP_TAC THEN
REPEAT STRIP_TAC THEN BETA_TAC THEN COND_CASES_TAC THEN
ASM_REWRITE_TAC[];
DISCH_THEN(MP_TAC o C AP_THM `x:A`) THEN REWRITE_TAC[]]]);;
(* ------------------------------------------------------------------------- *)
(* Extend default congruences for contextual rewriting. *)
(* ------------------------------------------------------------------------- *)
let COND_CONG =
TAUT `(g = g') ==>
(g' ==> (t = t')) ==>
(~g' ==> (e = e')) ==>
((if g then t else e) = (if g' then t' else e'))` in
extend_basic_congs [COND_CONG];;
let COND_EQ_CLAUSE = prove
(`(if x = x then y else z) = y`,
REWRITE_TAC[]) in
extend_basic_rewrites [COND_EQ_CLAUSE];;
(* ------------------------------------------------------------------------- *)
(* We can now treat "bool" as an enumerated type for some purposes. *)
(* ------------------------------------------------------------------------- *)
let bool_INDUCT = prove
(`!P. P F /\ P T ==> !x. P x`,
REPEAT STRIP_TAC THEN DISJ_CASES_TAC(SPEC `x:bool` BOOL_CASES_AX) THEN
ASM_REWRITE_TAC[]);;
let bool_RECURSION = prove
(`!a b:A. ?f. f F = a /\ f T = b`,
REPEAT GEN_TAC THEN EXISTS_TAC `\x. if x then b:A else a` THEN
REWRITE_TAC[]);;
let inductive_type_store = ref
["bool",(2,bool_INDUCT,bool_RECURSION)];;