-
Notifications
You must be signed in to change notification settings - Fork 1
/
train.py
155 lines (133 loc) · 4.98 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import logging
import os
import sys
import json
import torch
import torch.distributed as dist
import transformers
from transformers import AutoConfig, AutoTokenizer
from transformers import (
HfArgumentParser,
set_seed,
)
from transformers.trainer_utils import is_main_process
from arguments import (
ModelArguments,
DataArguments,
EmbeddingTrainingArguments as TrainingArguments,
)
from data import (
InfiniteMultipleIterableDataset,
QDCollator,
)
from models import AutoModelForSentenceEmbedding
from trainer import (
EmbeddingTrainer as Trainer,
GCTrainer,
)
logger = logging.getLogger(__name__)
def main():
parser = HfArgumentParser((ModelArguments, DataArguments, TrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
model_args: ModelArguments
data_args: DataArguments
training_args: TrainingArguments
training_args.remove_unused_columns = False
if (
os.path.exists(training_args.output_dir)
and os.listdir(training_args.output_dir)
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. Use --overwrite_output_dir to overcome."
)
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN,
)
logger.warning(
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
training_args.local_rank,
training_args.device,
training_args.n_gpu,
bool(training_args.local_rank != -1),
training_args.fp16,
)
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
if training_args.local_rank in (0, -1):
logger.info("Training/evaluation parameters %s", training_args)
logger.info("Model parameters %s", model_args)
logger.info("Data parameters %s", data_args)
set_seed(training_args.seed)
num_labels = 1
config = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
num_labels=num_labels,
cache_dir=model_args.cache_dir,
)
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir
)
tokenizer.padding_side = 'right' # bloom
if "gpt" in model_args.model_name_or_path: # gpt-neo
tokenizer.pad_token = tokenizer.eos_token
model = AutoModelForSentenceEmbedding(
model_args.model_name_or_path,
pooling=model_args.pooling,
normalize=model_args.normalize,
add_pooler=model_args.add_pooler,
embedding_dim=model_args.embedding_dim,
bitfit=model_args.bitfit,
cache_dir=model_args.cache_dir,
)
if training_args.local_rank > 0:
print("Waiting for main process to perform the mapping")
torch.distributed.barrier()
if training_args.local_rank == 0:
print("Loading results from main process")
torch.distributed.barrier()
data_config = json.load(open(data_args.data_config))
world_size = dist.get_world_size() if dist.is_initialized() else 1
global_batch_size = training_args.per_device_train_batch_size * world_size
train_dataset = InfiniteMultipleIterableDataset(
train_dir=data_args.train_dir,
data_config=data_config,
batch_size=global_batch_size,
query_field=data_args.query_column,
doc_field=data_args.doc_column,
coeff=data_args.mix_coefficient,
buffer_size=data_args.buffer_size,
seed=training_args.seed,
)
data_collator = QDCollator(
tokenizer,
max_q_len=data_args.q_max_len,
max_d_len=data_args.d_max_len,
with_prompt=data_args.add_prompt,
with_instruction=data_args.add_instruction,
mask_instruction_pooling=data_args.mask_instruction_pooling,
)
# torch.autograd.set_detect_anomaly(True)
trainer_cls = GCTrainer if training_args.grad_cache else Trainer
trainer = trainer_cls(
model=model,
args=training_args,
train_dataset=train_dataset,
data_collator=data_collator,
tokenizer=tokenizer,
)
trainer.train() # TODO: resume training
trainer.save_model()
if __name__ == "__main__":
main()