-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbaseline_densenet_pytorch.py
245 lines (184 loc) · 6.45 KB
/
baseline_densenet_pytorch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import torch
from torch.nn import BCELoss
from torch.optim import Adam
from torch.utils.data import DataLoader
import numpy as np
import os
import pandas as pd
from lesion_dataset import LesionDataset
from module_densenet_pytorch import DenseNetCNN
import doctest
import warnings
'''
HyperParams is an object containing
- n_classes Int (The number of classes being classified)
- n_epochs Int (The number of epochs during training)
- batch_size Int (The number of images in each batch)
- learning_rate Num (The learning rate used by the optimizer)
interp. hyper parameters used by machine learning model during training
Example:
params = {
n_classes: 1,
n_epochs: 20,
batch_size: 4,
learning_rate = 0.003,
}
'''
def fn_for_hyper_params(hyperparams):
... hyperparams.n_classes
... hyperparams.n_epochs
... hyperparams.batch_size
... hyperparams.learning_rate
# =========
# Constants
hyperparams = {
n_classes = 1, # Binary Classification
n_epochs = 20,
batch_size = 4,
learning_rate = 0.003
}
# =========
# Functions
def setup():
"""
Call various world setup functions
"""
warnings.filterwarnings("ignore", category=UserWarning)
# Use GPU
if not "GeForce" in torch.cuda.get_device_name(
torch.cuda.current_device()):
print("Stopped. Not using GPU.")
exit()
else:
print("Using: ", torch.cuda.get_device_name(
torch.cuda.current_device()))
'''
=============
Main Function
Call with:
- ...
'''
def main():
setup()
if __name__ == "__main__":
main()
# Ignore warnings for now
# Make sure we are using GPU
# Training Parameters
n_classes = 1 # Binary Classification
n_epochs = 20
batch_size = 4
learning_rate = 0.003
model = DenseNetCNN(n_classes)
model.cuda()
# Loss / Optim
# Attempt 1
# criterion = BCELoss()
# optimizer = Adam(model.parameters(), lr=learning_rate)
# Attempt 2
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate, momentum=0.9)
# Load Training Data
train_df = pd.read_csv('./data_csvs/train_only_ids.csv')
train_ds = LesionDataset(train_df, './lesion_images/all_images_processed_2/')
train_dl = DataLoader(train_ds,
batch_size=batch_size,
shuffle=True,
num_workers=4)
valid_df = pd.read_csv('./data_csvs/test_only_ids.csv')
valid_ds = LesionDataset(valid_df, './lesion_images/all_images_processed_2/')
valid_dl = DataLoader(valid_ds,
batch_size=batch_size,
shuffle=True,
num_workers=4)
dataloaders = {
'train': train_dl,
'valid': valid_dl}
# Training and Validation
best_train_loss = np.Inf
best_train_acc = 0.0
last_train_loss = np.Inf
last_train_acc = 0.0
train_acc_list = []
best_valid_loss = np.Inf
best_valid_acc = 0.0
last_valid_loss = np.Inf
last_valid_acc = 0.0
valid_acc_list = []
train_loss_decreasing_count = 0
strike = 0
for epoch in range(1, n_epochs + 1):
if epoch > 1:
checkpoint = {
'model': DenseNetCNN(n_classes),
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict()}
torch.save(checkpoint, 'pytorch_baseline_checkpoint.pth')
for phase in ['train', 'valid']:
if phase == 'train':
model.train()
else:
model.eval()
running_loss = 0.0
running_correct = 0
epoch_loss = 0.0
epoch_acc = 0.0
for i, data in enumerate(dataloaders[phase], 0):
inputs, labels = data
inputs, labels = inputs.cuda(), labels.cuda()
outputs = model(inputs.float())
loss = criterion(outputs, torch.max(labels, 1)[1]) # For CrossEntropyLoss
# loss = criterion(outputs, labels.float()) # For BCELoss
if phase == 'train':
optimizer.zero_grad()
loss.backward()
optimizer.step()
_, preds = torch.max(outputs, 1)
preds = preds.reshape(labels.shape) # Ensure comparison is of the same size
running_loss += loss.detach() * inputs.size(0)
running_correct += torch.sum(preds.float() == labels.float())
epoch_loss = running_loss.item() / ((i + 1) * batch_size)
epoch_acc = running_correct.item() / ((i + 1) * batch_size) * 100
if i % 20 == 19:
os.system('cls' if os.name == 'nt' else 'clear')
phase_progress = ((i + 1) * batch_size) / len(dataloaders[phase].dataset) * 100
print("Current Phase: ", phase)
print("Epoch: ", epoch, "/", n_epochs)
print("Phase Progress: {:.3f} %".format(phase_progress))
print("---")
print("Running Loss: {:.3f}".format(epoch_loss))
print("Running Acc: {:.3f} %".format(epoch_acc))
print("---")
print("Best Train Loss: {:.3f}".format(best_train_loss))
print("Best Train Acc: {:.3f} %".format(best_train_acc))
print("Last Train Loss: {:.3f}".format(last_train_loss))
print("Last Train Acc: {:.3f} %".format(last_train_acc))
print("---")
print("Best Valid Loss: {:.3f}".format(best_valid_loss))
print("Best Valid Acc: {:.3f} %".format(best_valid_acc))
print("Last Valid Loss: {:.3f}".format(best_valid_loss))
print("Last Valid Acc: {:.3f} %".format(best_valid_acc))
if phase == 'train':
last_train_loss = epoch_loss
last_train_acc = epoch_acc
if last_train_loss < best_train_loss:
best_train_loss = last_train_loss
train_loss_decreasing_count += 1
else:
train_loss_decreasing_count = 0
if last_train_acc > best_train_acc:
best_train_acc = last_train_acc
elif phase == 'valid':
last_valid_loss = epoch_loss
last_valid_acc = epoch_acc
if last_valid_loss < best_valid_loss:
best_valid_loss = last_valid_loss
if last_valid_acc > best_valid_acc:
best_valid_acc = last_valid_acc
if epoch > 5 and train_loss_decreasing_count == 0:
strike += 1
if strike == 3:
break
print('---')
print('Finished Training. Saving Model...')
torch.save(model.state_dict(), 'pytorch_densenet151_baseline_model.pt')