-
Notifications
You must be signed in to change notification settings - Fork 36
/
predict.py
executable file
·655 lines (539 loc) · 23.8 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
#!/usr/bin/env python
# Path to predictor binary
pred_binary = './pred_src/pred'
# Modules from the Python standard library.
import datetime
import time as timelib
import math
import sys
import os
import socket
import logging
import traceback
import calendar
import optparse
import subprocess
import statsd
import tempfile
import shutil
import bisect
import simplejson as json
statsd.init_statsd({'STATSD_BUCKET_PREFIX': 'habhub.predictor'})
# We use Pydap from http://pydap.org/.
import pydap.exceptions, pydap.client, pydap.lib
pydap.lib.CACHE = "/tmp/pydap-cache/"
# horrid, horrid monkey patching to force
# otherwise broken caching from dods server
# this is really, really hacky
import pydap.util.http
def fresh(response_headers, request_headers):
cc = pydap.util.http.httplib2._parse_cache_control(response_headers)
if cc.has_key('no-cache'):
return 'STALE'
return 'FRESH'
pydap.util.http.httplib2._entry_disposition = fresh
# Output logger format
log = logging.getLogger('main')
log_formatter = logging.Formatter('%(levelname)s: %(message)s')
console = logging.StreamHandler()
console.setFormatter(log_formatter)
log.addHandler(console)
progress_f = ''
progress = {
'run_time': '',
'gfs_percent': 0,
'gfs_timeremaining': '',
'gfs_complete': False,
'gfs_timestamp': '',
'pred_running': False,
'pred_complete': False,
'warnings': False,
'pred_output': [],
'error': '',
}
def update_progress(**kwargs):
global progress_f
global progress
for arg in kwargs:
progress[arg] = kwargs[arg]
try:
progress_f.truncate(0)
progress_f.seek(0)
progress_f.write(json.dumps(progress))
progress_f.flush()
os.fsync(progress_f.fileno())
except IOError:
global log
log.error('Could not update progress file')
@statsd.StatsdTimer.wrap('time')
def main():
"""
The main program routine.
"""
statsd.increment('run')
# Set up our command line options
parser = optparse.OptionParser()
parser.add_option('-d', '--cd', dest='directory',
help='change to, and run in, directory DIR',
metavar='DIR')
parser.add_option('--fork', dest='fork', action="store_true",
help='detach the process and run in the background')
parser.add_option('--alarm', dest='alarm', action="store_true",
help='setup an alarm for 10 minutes time to prevent hung processes')
parser.add_option('--redirect', dest='redirect', default='/dev/null',
help='if forking, file to send stdout/stderr to', metavar='FILE')
parser.add_option('-t', '--timestamp', dest='timestamp',
help='search for dataset covering the POSIX timestamp TIME \t[default: now]',
metavar='TIME', type='int',
default=calendar.timegm(datetime.datetime.utcnow().timetuple()))
parser.add_option('-v', '--verbose', action='count', dest='verbose',
help='be verbose. The more times this is specified the more verbose.', default=False)
parser.add_option('-p', '--past', dest='past',
help='window of time to save data is at most HOURS hours in past [default: %default]',
metavar='HOURS',
type='int', default=3)
parser.add_option('-f', '--future', dest='future',
help='window of time to save data is at most HOURS hours in future [default: %default]',
metavar='HOURS',
type='int', default=9)
parser.add_option('--hd', dest='hd', action="store_true",
help='use higher definition GFS data (default: no)')
parser.add_option('--preds', dest='preds_path',
help='path that contains uuid folders for predictions [default: %default]',
default='./predict/preds/', metavar='PATH')
group = optparse.OptionGroup(parser, "Location specifiers",
"Use these options to specify a particular tile of data to download.")
group.add_option('--lat', dest='lat',
help='tile centre latitude in range (-90,90) degrees north [default: %default]',
metavar='DEGREES',
type='float', default=52)
group.add_option('--lon', dest='lon',
help='tile centre longitude in degrees east [default: %default]',
metavar='DEGREES',
type='float', default=0)
group.add_option('--latdelta', dest='latdelta',
help='tile radius in latitude in degrees [default: %default]',
metavar='DEGREES',
type='float', default=5)
group.add_option('--londelta', dest='londelta',
help='tile radius in longitude in degrees [default: %default]',
metavar='DEGREES',
type='float', default=5)
parser.add_option_group(group)
#group = optparse.OptionGroup(parser, "Tile specifiers",
#"Use these options to specify how many tiles to download.")
#group.add_option('--lattiles', dest='lattiles',
#metavar='TILES',
#help='number of tiles along latitude to download [default: %default]',
#type='int', default=1)
#group.add_option('--lontiles', dest='lontiles',
#metavar='TILES',
#help='number of tiles along longitude to download [default: %default]',
#type='int', default=1)
#parser.add_option_group(group)
(options, args) = parser.parse_args()
# Check we got a UUID in the arguments
if len(args) != 1:
log.error('Exactly one positional argument should be supplied (uuid).')
statsd.increment('error')
sys.exit(1)
if options.directory:
os.chdir(options.directory)
if options.fork:
detach_process(options.redirect)
if options.alarm:
setup_alarm()
uuid = args[0]
uuid_path = options.preds_path + "/" + uuid + "/"
# Check we're not already running with this UUID
for line in os.popen('ps xa'):
process = " ".join(line.split()[4:])
if process.find(uuid) > 0:
pid = int(line.split()[0])
if pid != os.getpid():
statsd.increment('duplicate')
log.error('A process is already running for this UUID, quitting.')
sys.exit(1)
# Make the UUID directory if non existant
if not os.path.exists(uuid_path):
os.mkdir(uuid_path, 0770)
# Open the progress.json file for writing, creating it and closing again to flush
global progress_f
global progress
try:
progress_f = open(uuid_path+"progress.json", "w")
update_progress(
gfs_percent=0,
gfs_timeremaining="Please wait...",
run_time=str(int(timelib.time())))
except IOError:
log.error('Error opening progress.json file')
statsd.increment('error')
sys.exit(1)
# Check the predictor binary exists
if not os.path.exists(pred_binary):
log.error('Predictor binary does not exist.')
statsd.increment('error')
sys.exit(1)
# Check the latitude is in the right range.
if (options.lat < -90) | (options.lat > 90):
log.error('Latitude %s is outside of the range (-90,90).')
statsd.increment('error')
sys.exit(1)
# Check the delta sizes are valid.
if (options.latdelta <= 0.5) | (options.londelta <= 0.5):
log.error('Latitiude and longitude deltas must be at least 0.5 degrees.')
statsd.increment('error')
sys.exit(1)
if options.londelta > 180:
log.error('Longitude window sizes greater than 180 degrees are meaningless.')
statsd.increment('error')
sys.exit(1)
# We need to wrap the longitude into the right range.
options.lon = canonicalise_longitude(options.lon)
# How verbose are we being?
if options.verbose > 0:
log.setLevel(logging.INFO)
if options.verbose > 1:
log.setLevel(logging.DEBUG)
if options.verbose > 2:
logging.basicConfig(level=logging.INFO)
if options.verbose > 3:
logging.basicConfig(level=logging.DEBUG)
log.debug('Using cache directory: %s' % pydap.lib.CACHE)
timestamp_to_find = options.timestamp
time_to_find = datetime.datetime.utcfromtimestamp(timestamp_to_find)
log.info('Looking for latest dataset which covers %s' % time_to_find.ctime())
try:
dataset = dataset_for_time(time_to_find, options.hd)
except:
log.error('Could not locate a dataset for the requested time.')
statsd.increment('no_dataset')
statsd.increment('error')
sys.exit(1)
dataset_times = map(timestamp_to_datetime, dataset.time)
dataset_timestamps = map(datetime_to_posix, dataset_times)
log.info('Found appropriate dataset:')
log.info(' Start time: %s (POSIX %s)' % \
(dataset_times[0].ctime(), dataset_timestamps[0]))
log.info(' End time: %s (POSIX %s)' % \
(dataset_times[-1].ctime(), dataset_timestamps[-1]))
log.info(' Latitude: %s -> %s' % (min(dataset.lat), max(dataset.lat)))
log.info(' Longitude: %s -> %s' % (min(dataset.lon), max(dataset.lon)))
# for dlat in range(0,options.lattiles):
# for dlon in range(0,options.lontiles):
window = ( \
options.lat, options.latdelta, \
options.lon, options.londelta)
gfs_dir = "/var/www/cusf-standalone-predictor/gfs/"
gfs_dir = tempfile.mkdtemp(dir=gfs_dir)
gfs_filename = "gfs_%(time)_%(lat)_%(lon)_%(latdelta)_%(londelta).dat"
output_format = os.path.join(gfs_dir, gfs_filename)
write_file(output_format, dataset, \
window, \
time_to_find - datetime.timedelta(hours=options.past), \
time_to_find + datetime.timedelta(hours=options.future))
#purge_cache()
update_progress(gfs_percent=100, gfs_timeremaining='Done', gfs_complete=True, pred_running=True)
if options.alarm:
alarm_flags = ["-a120"]
else:
alarm_flags = []
command = [pred_binary, '-i' + gfs_dir, '-v', '-o'+uuid_path+'flight_path.csv', uuid_path+'scenario.ini'] + alarm_flags
pred_process = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.STDOUT)
pred_output = []
while True:
line = pred_process.stdout.readline()
if line == '':
break
# pass through
sys.stdout.write(line)
if "ERROR: Do not have wind data" in line:
pred_output = ["One of the latitude, longitude or time deltas ({0}, {1}, {2}) was too small."
.format(options.latdelta, options.londelta, options.future),
"Please adjust the settings accordingly and re-run your prediction.",
""] + pred_output
if ("WARN" in line or "ERROR" in line) and len(pred_output) < 10:
pred_output.append(line.strip())
exit_code = pred_process.wait()
shutil.rmtree(gfs_dir)
if exit_code == 1:
# Hard error from the predictor. Tell the javascript it completed, so that it will show the trace,
# but pop up a 'warnings' window with the error messages
update_progress(pred_running=False, pred_complete=True, warnings=True, pred_output=pred_output)
statsd.increment('success_serious_warnings')
elif pred_output:
# Soft error (altitude too low error, typically): pred_output being set forces the debug
# window open with the messages in
update_progress(pred_running=False, pred_complete=True, pred_output=pred_output)
statsd.increment('success_minor_warnings')
else:
assert exit_code == 0
update_progress(pred_running=False, pred_complete=True)
statsd.increment('success')
def purge_cache():
"""
Purge the pydap cache (if set).
"""
if pydap.lib.CACHE is None:
return
log.info('Purging PyDAP cache.')
for file in os.listdir(pydap.lib.CACHE):
log.debug(' Deleting %s.' % file)
os.remove(pydap.lib.CACHE + file)
def write_file(output_format, data, window, mintime, maxtime):
log.info('Downloading data in window (lat, lon) = (%s +/- %s, %s +/- %s).' % window)
# Firstly, get the hgtprs variable to extract the times we're going to use.
hgtprs_global = data['hgtprs']
# Check the dimensions are what we expect.
assert(hgtprs_global.dimensions == ('time', 'lev', 'lat', 'lon'))
# Work out what times we want to download
times = sorted(map(timestamp_to_datetime, hgtprs_global.maps['time']))
times_first = max(0, bisect.bisect_right(times, mintime) - 1)
times_last = min(len(times), bisect.bisect_left(times, maxtime) + 1)
times = times[times_first:times_last]
num_times = len(times)
current_time = 0
start_time = min(times)
end_time = max(times)
log.info('Downloading from %s to %s.' % (start_time.ctime(), end_time.ctime()))
# Filter the longitudes we're actually going to use.
longitudes = filter(lambda x: longitude_distance(x[1], window[2]) <= window[3] ,
enumerate(hgtprs_global.maps['lon']))
# Filter the latitudes we're actually going to use.
latitudes = filter(lambda x: math.fabs(x[1] - window[0]) <= window[1] ,
enumerate(hgtprs_global.maps['lat']))
update_progress(gfs_percent=10, gfs_timeremaining="Please wait...")
starttime = datetime.datetime.now()
# Write one file for each time index.
for timeidx, time in enumerate(hgtprs_global.maps['time']):
timestamp = datetime_to_posix(timestamp_to_datetime(time))
if (timestamp < datetime_to_posix(start_time)) | (timestamp > datetime_to_posix(end_time)):
continue
current_time += 1
log.info('Downloading data for %s.' % (timestamp_to_datetime(time).ctime()))
downloaded_data = { }
current_var = 0
time_per_var = datetime.timedelta()
for var in ('hgtprs', 'ugrdprs', 'vgrdprs'):
current_var += 1
grid = data[var]
log.info('Processing variable \'%s\' with shape %s...' % (var, grid.shape))
# Check the dimensions are what we expect.
assert(grid.dimensions == ('time', 'lev', 'lat', 'lon'))
# See if the longitude ragion wraps...
if (longitudes[0][0] == 0) & (longitudes[-1][0] == hgtprs_global.maps['lat'].shape[0]-1):
# Download the data. Unfortunately, OpeNDAP only supports remote access of
# contiguous regions. Since the longitude data wraps, we may require two
# windows. The 'right' way to fix this is to download a 'left' and 'right' window
# and munge them together. In terms of download speed, however, the overhead of
# downloading is so great that it is quicker to download all the longitude
# data in our slice and do the munging afterwards.
selection = grid[\
timeidx,
:, \
latitudes[0][0]:(latitudes[-1][0]+1),
: ]
else:
selection = grid[\
timeidx,
:, \
latitudes[0][0]:(latitudes[-1][0]+1),
longitudes[0][0]:(longitudes[-1][0]+1) ]
# Cache the downloaded data for later
downloaded_data[var] = selection
log.info(' Downloaded data has shape %s...', selection.shape)
assert len(selection.shape) == 3
now = datetime.datetime.now()
time_elapsed = now - starttime
num_vars = (current_time - 1)*3 + current_var
time_per_var = time_elapsed / num_vars
total_time = num_times * 3 * time_per_var
time_left = total_time - time_elapsed
time_left = timelib.strftime('%M:%S', timelib.gmtime(time_left.seconds))
update_progress(gfs_percent=int(
10 +
(((current_time - 1) * 90) / num_times) +
((current_var * 90) / (3 * num_times))
), gfs_timeremaining=time_left)
# Check all the downloaded data has the same shape
target_shape = downloaded_data['hgtprs']
assert( all( map( lambda x: x == target_shape,
filter( lambda x: x.shape, downloaded_data.itervalues() ) ) ) )
log.info('Writing output...')
hgtprs = downloaded_data['hgtprs']
ugrdprs = downloaded_data['ugrdprs']
vgrdprs = downloaded_data['vgrdprs']
log.debug('Using longitudes: %s' % (map(lambda x: x[1], longitudes),))
output_filename = output_format
output_filename = output_filename.replace('%(time)', str(timestamp))
output_filename = output_filename.replace('%(lat)', str(window[0]))
output_filename = output_filename.replace('%(latdelta)', str(window[1]))
output_filename = output_filename.replace('%(lon)', str(window[2]))
output_filename = output_filename.replace('%(londelta)', str(window[3]))
log.info(' Writing \'%s\'...' % output_filename)
output = open(output_filename, 'w')
# Write the header.
output.write('# window centre latitude, window latitude radius, window centre longitude, window longitude radius, POSIX timestamp\n')
header = window + (timestamp,)
output.write(','.join(map(str,header)) + '\n')
# Write the axis count.
output.write('# num_axes\n')
output.write('3\n') # FIXME: HARDCODED!
# Write each axis, a record showing the size and then one with the values.
output.write('# axis 1: pressures\n')
output.write(str(hgtprs.maps['lev'].shape[0]) + '\n')
output.write(','.join(map(str,hgtprs.maps['lev'][:])) + '\n')
output.write('# axis 2: latitudes\n')
output.write(str(len(latitudes)) + '\n')
output.write(','.join(map(lambda x: str(x[1]), latitudes)) + '\n')
output.write('# axis 3: longitudes\n')
output.write(str(len(longitudes)) + '\n')
output.write(','.join(map(lambda x: str(x[1]), longitudes)) + '\n')
# Write the number of lines of data.
output.write('# number of lines of data\n')
output.write('%s\n' % (hgtprs.shape[0] * len(latitudes) * len(longitudes)))
# Write the number of components in each data line.
output.write('# data line component count\n')
output.write('3\n') # FIXME: HARDCODED!
# Write the data itself.
output.write('# now the data in axis 3 major order\n')
output.write('# data is: '
'geopotential height [gpm], u-component wind [m/s], '
'v-component wind [m/s]\n')
for pressureidx, pressure in enumerate(hgtprs.maps['lev']):
for latidx, latitude in enumerate(hgtprs.maps['lat']):
for lonidx, longitude in enumerate(hgtprs.maps['lon']):
if longitude_distance(longitude, window[2]) > window[3]:
continue
record = ( hgtprs.array[pressureidx,latidx,lonidx], \
ugrdprs.array[pressureidx,latidx,lonidx], \
vgrdprs.array[pressureidx,latidx,lonidx] )
output.write(','.join(map(str,record)) + '\n')
def canonicalise_longitude(lon):
"""
The GFS model has all longitudes in the range 0.0 -> 359.5. Canonicalise
a longitude so that it fits in this range and return it.
"""
lon = math.fmod(lon, 360)
if lon < 0.0:
lon += 360.0
assert((lon >= 0.0) & (lon < 360.0))
return lon
def longitude_distance(lona, lonb):
"""
Return the shortest distance in degrees between longitudes lona and lonb.
"""
distances = ( \
math.fabs(lona - lonb), # Straightforward distance
360 - math.fabs(lona - lonb), # Other way 'round.
)
return min(distances)
def datetime_to_posix(time):
"""
Convert a datetime object to a POSIX timestamp.
"""
return calendar.timegm(time.timetuple())
def timestamp_to_datetime(timestamp):
"""
Convert a GFS fractional timestamp into a datetime object representing
that time.
"""
# The GFS timestmp is a floating point number fo days from the epoch,
# day '0' appears to be January 1st 1 AD.
(fractional_day, integer_day) = math.modf(timestamp)
# Unfortunately, the datetime module uses a different epoch.
ordinal_day = int(integer_day - 1)
# Convert the integer day to a time and add the fractional day.
return datetime.datetime.fromordinal(ordinal_day) + \
datetime.timedelta(days = fractional_day)
def possible_urls(time, hd):
"""
Given a datetime object representing a date and time, return a list of
possible data URLs which could cover that period.
The list is ordered from latest URL (i.e. most likely to be correct) to
earliest.
We assume that a particular data set covers a period of P days and
hence the earliest data set corresponds to time T - P and the latest
available corresponds to time T given target time T.
"""
period = datetime.timedelta(days = 7.5)
earliest = time - period
latest = time
if hd:
url_format = 'http://{host}:9090/dods/gfs_hd/gfs_hd%i%02i%02i/gfs_hd_%02iz'
else:
url_format = 'http://{host}:9090/dods/gfs/gfs%i%02i%02i/gfs_%02iz'
# Often we have issues where one IP address (the DNS resolves to 2 or more)
# will have a dataset and the other one won't yet.
# This causes "blah is not an available dataset" errors since predict.py
# thinks it's OK to use a recent one, and then by chance we end up talking
# to a server on a later request that doesn't have it.
selected_ip = socket.gethostbyname("nomads.ncep.noaa.gov")
log.info("Picked IP: {0}".format(selected_ip))
url_format = url_format.format(host=selected_ip)
# Start from the latest, work to the earliest
proposed = latest
possible_urls = []
while proposed >= earliest:
for offset in ( 18, 12, 6, 0 ):
possible_urls.append(url_format % \
(proposed.year, proposed.month, proposed.day, offset))
proposed -= datetime.timedelta(days = 1)
return possible_urls
def dataset_for_time(time, hd):
"""
Given a datetime object, attempt to find the latest dataset which covers that
time and return pydap dataset object for it.
"""
url_list = possible_urls(time, hd)
for url in url_list:
try:
log.debug('Trying dataset at %s.' % url)
dataset = pydap.client.open_url(url)
start_time = timestamp_to_datetime(dataset.time[0])
end_time = timestamp_to_datetime(dataset.time[-1])
if start_time <= time and end_time >= time:
log.info('Found good dataset at %s.' % url)
dataset_id = url.split("/")[5] + "_" + url.split("/")[6].split("_")[1]
update_progress(gfs_timestamp=dataset_id)
return dataset
except pydap.exceptions.ServerError:
# Skip server error.
pass
raise RuntimeError('Could not find appropriate dataset.')
def detach_process(redirect):
# Fork
if os.fork() > 0:
os._exit(0)
# Detach
os.setsid()
null_fd = os.open(os.devnull, os.O_RDONLY)
out_fd = os.open(redirect, os.O_WRONLY | os.O_APPEND)
os.dup2(null_fd, sys.stdin.fileno())
for s in [sys.stdout, sys.stderr]:
os.dup2(out_fd, s.fileno())
# Fork
if os.fork() > 0:
os._exit(0)
def setup_alarm():
# Prevent hung download:
import signal
signal.alarm(600)
# If this is being run from the interpreter, run the main function.
if __name__ == '__main__':
try:
main()
except SystemExit as e:
log.debug("Exit: " + repr(e))
if e.code != 0 and progress_f:
update_progress(error="Unknown error exit")
statsd.increment("unknown_error_exit")
raise
except Exception as e:
statsd.increment("uncaught_exception")
log.exception("Uncaught exception")
info = traceback.format_exc()
if progress_f:
update_progress(error="Unhandled exception: " + info)
raise