-
Notifications
You must be signed in to change notification settings - Fork 1
/
fineKeyframeDetector.py
189 lines (147 loc) · 8.78 KB
/
fineKeyframeDetector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import os
import json
import base64
import natsort
import numpy as np
from PIL import Image
from tqdm import tqdm
import torch
from torch.utils.data import Dataset, DataLoader
from config import config
from src.refine import refine_answer
from src.run_gpt import run_gpt
class CustomDatasetGPT(Dataset):
def __init__(self, questions, num_input_imgs, num_select):
self.questions = questions
self.num_input_imgs = num_input_imgs
self.num_select = num_select
def __getitem__(self, index):
line = self.questions[index]
num_select = self.num_select
num_input_imgs = self.num_input_imgs
giter = 0
imgs_group = 8
num_groups = num_input_imgs//imgs_group
kf_paths = line["kf_paths"]
keywords = line["keywords"]
simvalue = line["simvalue"]
concatimg_dir = line['concatimg_dir']
concatimg_paths = natsort.natsorted([f"{concatimg_dir}/{im}" for im in os.listdir(concatimg_dir) if "ipynb" not in im])
concatimages = []
concatimages_base64 = []
qs_org = []
kw_perconcat = []
kf_paths_perconcat = []
simvalue_perconcat = []
segment_timeline = []
for concatidx, img_path in enumerate(concatimg_paths):
concatimages.append(Image.open(img_path).convert('RGB'))
concatimages_base64.append(img_path)
kw_sidx = imgs_group*(concatidx)
kw_eidx = imgs_group*(concatidx+1)
concat_kw = keywords[kw_sidx:kw_eidx]
qs_org_ = create_question(concat_kw, num_select)
kw_perconcat.append(concat_kw)
qs_org.append(qs_org_)
kf_paths_perconcat.append(kf_paths[kw_sidx:kw_eidx])
simvalue_perconcat.append(simvalue[kw_sidx:kw_eidx])
segment_timeline.append(line["segment_timeline"])
concatimg_paths = concatimg_paths[-num_groups:]
concatimages_base64 = concatimages_base64[-num_groups:]
qs_org = qs_org[-num_groups:]
kw_perconcat = kw_perconcat[-num_groups:]
kf_paths_perconcat = kf_paths_perconcat[-num_groups:]
simvalue_perconcat = simvalue_perconcat[-num_groups:]
segment_timeline = segment_timeline[-num_groups:]
return concatimages_base64, concatimages[0].size, kw_perconcat, kf_paths_perconcat, qs_org, segment_timeline, concatimg_paths, simvalue_perconcat
def __len__(self):
return len(self.questions)
def create_question(concat_kw, num_select):
imgkw_sen = ""
for i, e in enumerate(concat_kw):
if i < len(concat_kw) - 1: imgkw_sen = imgkw_sen + f"Image_{i}: '{e}', "
else: imgkw_sen = imgkw_sen + f"Image_{i}: '{e}'."
if num_select == 3:
prompt = f"Eight images, having egocentric perspectives, are juxtaposed, separated by a red vertical line and red horizontal line. In the first row, the images from left to right are named as image_0, image_1, image_2, image_3. In the second row, the images from left to right are named as image_4, image_5, image_6, image_7. Here are images and their associated guess words: {imgkw_sen}. Think step-by-step and list only the names of the {num_select} images most closely related to the guessed words. Do not select blurry images in your answer. If none of the images correspond to the provided guess words, choose any two images at random. Your answer should follow the JSON format shown below and should only include the JSON result. Do not output any warnings or notes under any circumstances. Instead, adhere strictly to the provided JSON format example.\n"
prompt += "{\"image name\": write reason for your selection in 10 words}."
prompt += " This is one example output format. {\n \"image_0\": \"Person washing a plate; linked to dish cleaning.\",\n \"image_2\": \"Person washing a bowl; linked to dish cleaning.\",\n \"image_6\": \"Person running water on a sponge; related to dish cleaning.\"\n}"
elif num_select == 4:
prompt = f"Eight images, having egocentric perspectives, are juxtaposed, separated by a red vertical line and red horizontal line. In the first row, the images from left to right are named as image_0, image_1, image_2, image_3. In the second row, the images from left to right are named as image_4, image_5, image_6, image_7. Here are images and their associated guess words: {imgkw_sen}. Think step-by-step and list only the names of the {num_select} images most closely related to the guessed words. Do not select blurry images in your answer. If none of the images correspond to the provided guess words, choose any two images at random. Your answer should follow the JSON format shown below and should only include the JSON result. Do not output any warnings or notes under any circumstances. Instead, adhere strictly to the provided JSON format example.\n"
prompt += "{\"image name\": write reason for your selection in 10 words}."
prompt += " This is one example output format. {\n \"image_0\": \"Person washing a plate; linked to dish cleaning.\",\n \"image_2\": \"Person washing a bowl; linked to dish cleaning.\",\n \"image_6\": \"Person running water on a sponge; related to dish cleaning.\",\n \"image_7\": \"Person moves mouse; linked to working.\"\n}"
else: assert False, f"num_select:{num_select} is not defined yet"
return prompt
def encode_image(image_path):
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode('utf-8')
def create_data_loader_gpt(questions, num_input_imgs, num_select, batch_size=1, num_workers=4):
assert batch_size == 1, "batch_size must be 1"
dataset = CustomDatasetGPT(questions, num_input_imgs, num_select)
data_loader = DataLoader(dataset, batch_size=batch_size, num_workers=num_workers, shuffle=False)
return data_loader, dataset
def eval_model():
question_path, vlm, num_input_imgs, num_select, temp = config.kf_question_path, config.kf_vlm, config.kf_num_input_imgs, config.kf_num_select, config.kf_temp
questions = [json.loads(q) for q in open(os.path.expanduser(question_path), "r")]
num_questions = len(questions)
giter = 0
answer_path = config.kf_answer_path
os.makedirs(os.path.dirname(answer_path), exist_ok=True)
print(f"question_path:{question_path}\nanswer_path:{answer_path}")
ans_file = open(answer_path, "w")
data_loader, dataset = create_data_loader_gpt(questions, num_input_imgs, num_select)
outputs = ""
for (image_paths, image_sizes, kw_perconcat, kf_paths_perconcat, cur_prompts, segment_timeline, concatimg_paths, simvalue_perconcat), line in tqdm(zip(data_loader, questions), total=len(questions)):
idx, q_uid = line["q_uid"], line["q_uid"]
CA = line["CA"] if "CA" in line else None
option0 = line['option 0']
option1 = line['option 1']
option2 = line['option 2']
option3 = line['option 3']
option4 = line['option 4']
question = line['question']
pastobj = None
past_VLM_path = None
past_VLM_timeline = None
kw_VLM = []
kf_paths_VLM = []
kf_timeline = []
kw_VLM_ordered = []
kf_paths_VLM_ordered = []
kf_timeline_ordered = []
prompts = [x[0] for x in cur_prompts]
image_paths = [x[0] for x in image_paths]
output_VLM = run_gpt(
images=image_paths,
texts=prompts,
api_keys = list(config.dict_api.values()),
max_tokens=2000,
model=vlm,
temperature=temp,
num_threads=20,
backoff_time=1*60,
silent=False,
dataset="egoschema",
verbose=False,
)
output_VLM = list(output_VLM)
for j, _ in enumerate(cur_prompts):
kf_paths_perconcat_ = kf_paths_perconcat[j]
kf_timeline.append([f"{e[0].split('_')[-2]}.{e[0].split('_')[-1].split('.')[0]}" for e in kf_paths_perconcat_])
line_frame = line.copy()
line_frame["output_VLM"] = output_VLM
line_frame["concatimg_paths"] = concatimg_paths
line_frame["kf_paths_VLM"] = kf_paths_perconcat
line_frame["kf_timeline"] = kf_timeline
line_frame["kw_perconcat_clip"] = kw_perconcat
line_frame["iter"] = giter
line_frame.pop("filepath")
line_frame.pop("kf_paths")
line_frame.pop("google_drive_id")
try: ans_file.write(json.dumps(line_frame) + "\n")
except: assert False, f"line_frame:{line_frame}"
ans_file.close()
print(f"question_path:{question_path}\nanswer_path:{answer_path}")
print("job is done")
if __name__ == "__main__":
eval_model()
refine_answer()