-
Notifications
You must be signed in to change notification settings - Fork 1
/
LLM_stage.py
168 lines (134 loc) · 5.52 KB
/
LLM_stage.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
"""
Evaluate a model on the egoschema dataset using LVNet (captions pre-generated)
Sample Run:
python3 LLM_stage.py \
--output-dir ego_base_link \
--captions data/ES_captions_gpt4o.jsonl \
--per-vid-captions 12 \
--gptmodel "gpt-4o" \
--temperature 0.0
"""
import argparse
import json
import os
from tqdm import tqdm
from src.run_gpt import run_gpt
# You may add multiple keys to run parallel calls
dict_api = {
"api_key": "ADD",
}
_PROMPT_TEMPLATE = (
"Here are descriptions of the video frames at specific times, noted in seconds."
"\n\n{Putdesc}.\n\nThe descriptions of the frames conclude. Think step-by-step"
" and I request your selection of the most appropriate response to the following"
" question\n\nQuestion:\n{Putquestion}\n\nOptions:\n{AllOptions}"
)
def eval_model(args):
# change split to split
captions_path, data_path, split, gptmodel, temp, base_dir, job_name = (
args.captions,
args.data,
args.per_vid_captions,
args.gptmodel,
args.temperature,
args.output_dir,
args.job_name,
)
prompt = _PROMPT_TEMPLATE
os.makedirs(base_dir, exist_ok=True)
output_dir = f"{base_dir}/egoschema/{job_name}"
output_dir = os.path.expanduser(output_dir)
os.makedirs(output_dir, exist_ok=True)
save_name = captions_path.rsplit("/", 2)[-1].replace(".jsonl", "")
output_summary_path = f"{output_dir}/{save_name}.jsonl"
print(f"Saving outputs to:{output_summary_path}")
output_summary = open(output_summary_path, "w")
input_summary = [
json.loads(q) for q in open(os.path.expanduser(captions_path), "r")
]
dataset = json.load(open(os.path.expanduser(data_path), "r"))
input_len = len(input_summary)
assert (
input_len % split == 0
), f"input_len%split:{input_len%split}, input_len:{input_len}, split:{split}"
groups = input_len // split
final_prompts = []
final_info = []
for i in tqdm(range(groups)):
sidx = i * split
eidx = (i + 1) * split
desc = ""
timeline = []
for idx, e in enumerate(input_summary[sidx:eidx]):
cur_data = dataset[e["q_uid"]]
desc += e["answer"] + " "
timeline.append(e["timeline"])
if idx == split - 1: # the last of split
action_0 = cur_data["option 0"]
action_1 = cur_data["option 1"]
action_2 = cur_data["option 2"]
action_3 = cur_data["option 3"]
action_4 = cur_data["option 4"]
option_list = ""
option_number_candidate = ["one", "two", "three", "four", "five"]
option_number = option_number_candidate[4]
AllOptNumber = "option 0, option 1, option 2, option 3, option 4"
FocusOptions = ""
alloptions = f"option 0: {action_0}\noption 1: {action_1}\noption 2: {action_2}\noption 3: {action_3}\noption 4: {action_4}"
option_list = f"option 0: {action_0}\noption 1: {action_1}\noption 2: {action_2}\noption 3: {action_3}\noption 4: {action_4}"
FocusOptions += "option 0, option 1, option 2, option 3, option 4"
question = cur_data["question"]
curr_prompt = (
prompt.replace("{Putdesc}", desc)
.replace("{Putquestion}", question)
.replace("{Putoptions}", option_list)
.replace("{PutOptNumber}", option_number)
.replace("{FocusOptions}", FocusOptions)
.replace("{AllOptions}", alloptions)
.replace("{PutAllOptNumber}", AllOptNumber)
)
final_prompts.append(curr_prompt)
CA_option = {}
if "CA" in cur_data:
CA_option = {"CA": cur_data["CA"]}
info = {
"q_uid": e["q_uid"],
"prompt": curr_prompt,
"timeline": timeline,
"question": question,
"option 0": action_0,
"option 1": action_1,
"option 2": action_2,
"option 3": action_3,
"option 4": action_4,
} | CA_option
final_info.append(info)
output_VLM = run_gpt(
texts=final_prompts,
api_keys=list(dict_api.values()),
max_tokens=2000,
model=gptmodel,
temperature=temp,
num_threads=20, # Tune this
backoff_time=1 * 60,
silent=False,
dataset="egoschema",
)
output_VLM = list(output_VLM)
for q_idx, info in enumerate(tqdm(final_info)): # prompt_list = # Q&C
info["answer"] = output_VLM[q_idx]
output_summary.write(json.dumps(info) + "\n")
# finish the summarization for the current question
output_summary.close()
print(f"output_summary_path:{output_summary_path}")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--output-dir", type=str)
parser.add_argument("--job-name", type=str, default="run001")
parser.add_argument("--captions", type=str, default="data/ES_captions_gpt4o.jsonl")
parser.add_argument("--data", type=str, default="data/ES_qa_data.json")
parser.add_argument("--per-vid-captions", type=int, default=12)
parser.add_argument("--gptmodel", type=str, default="gpt-3.5-turbo-1106")
parser.add_argument("--temperature", type=float, default=None)
args = parser.parse_args()
eval_model(args)