From 8c13a9bfe16c426c082b8df401098c02db53c9a0 Mon Sep 17 00:00:00 2001 From: Peter Dettman Date: Fri, 3 Dec 2021 23:55:40 +0700 Subject: [PATCH] ECDH skews by 0 or 1 --- src/ecmult_const_impl.h | 45 ++++++++++++----------------------------- src/tests.c | 2 +- 2 files changed, 14 insertions(+), 33 deletions(-) diff --git a/src/ecmult_const_impl.h b/src/ecmult_const_impl.h index 2a8a293c7..c384d0fac 100644 --- a/src/ecmult_const_impl.h +++ b/src/ecmult_const_impl.h @@ -56,7 +56,6 @@ static void secp256k1_ecmult_odd_multiples_table_globalz_windowa(secp256k1_ge *p secp256k1_fe_cmov(&(r)->y, &neg_y, (n) != abs_n); \ } while(0) - /** Convert a number to WNAF notation. * The number becomes represented by sum(2^{wi} * wnaf[i], i=0..WNAF_SIZE(w)+1) - return_val. * It has the following guarantees: @@ -72,7 +71,7 @@ static void secp256k1_ecmult_odd_multiples_table_globalz_windowa(secp256k1_ge *p */ static int secp256k1_wnaf_const(int *wnaf, const secp256k1_scalar *scalar, int w, int size) { int global_sign; - int skew = 0; + int skew; int word = 0; /* 1 2 3 */ @@ -80,9 +79,7 @@ static int secp256k1_wnaf_const(int *wnaf, const secp256k1_scalar *scalar, int w int u; int flip; - int bit; - secp256k1_scalar s; - int not_neg_one; + secp256k1_scalar s = *scalar; VERIFY_CHECK(w > 0); VERIFY_CHECK(size > 0); @@ -90,33 +87,19 @@ static int secp256k1_wnaf_const(int *wnaf, const secp256k1_scalar *scalar, int w /* Note that we cannot handle even numbers by negating them to be odd, as is * done in other implementations, since if our scalars were specified to have * width < 256 for performance reasons, their negations would have width 256 - * and we'd lose any performance benefit. Instead, we use a technique from - * Section 4.2 of the Okeya/Tagaki paper, which is to add either 1 (for even) - * or 2 (for odd) to the number we are encoding, returning a skew value indicating + * and we'd lose any performance benefit. Instead, we use a variation of a + * technique from Section 4.2 of the Okeya/Tagaki paper, which is to add 1 to the + * number we are encoding when it is even, returning a skew value indicating * this, and having the caller compensate after doing the multiplication. * * In fact, we _do_ want to negate numbers to minimize their bit-lengths (and in * particular, to ensure that the outputs from the endomorphism-split fit into - * 128 bits). If we negate, the parity of our number flips, inverting which of - * {1, 2} we want to add to the scalar when ensuring that it's odd. Further - * complicating things, -1 interacts badly with `secp256k1_scalar_cadd_bit` and - * we need to special-case it in this logic. */ - flip = secp256k1_scalar_is_high(scalar); - /* We add 1 to even numbers, 2 to odd ones, noting that negation flips parity */ - bit = flip ^ !secp256k1_scalar_is_even(scalar); - /* We check for negative one, since adding 2 to it will cause an overflow */ - secp256k1_scalar_negate(&s, scalar); - not_neg_one = !secp256k1_scalar_is_one(&s); - s = *scalar; - secp256k1_scalar_cadd_bit(&s, bit, not_neg_one); - /* If we had negative one, flip == 1, s.d[0] == 0, bit == 1, so caller expects - * that we added two to it and flipped it. In fact for -1 these operations are - * identical. We only flipped, but since skewing is required (in the sense that - * the skew must be 1 or 2, never zero) and flipping is not, we need to change - * our flags to claim that we only skewed. */ + * 128 bits). If we negate, the parity of our number flips, affecting whether + * we want to add to the scalar to ensure that it's odd. */ + flip = secp256k1_scalar_is_high(&s); + skew = flip ^ secp256k1_scalar_is_even(&s); + secp256k1_scalar_cadd_bit(&s, 0, skew); global_sign = secp256k1_scalar_cond_negate(&s, flip); - global_sign *= not_neg_one * 2 - 1; - skew = 1 << bit; /* 4 */ u_last = secp256k1_scalar_shr_int(&s, w); @@ -236,19 +219,17 @@ static void secp256k1_ecmult_const(secp256k1_gej *r, const secp256k1_ge *a, cons /* Correct for wNAF skew */ secp256k1_gej tmp; secp256k1_ge a_1; - secp256k1_ge_neg(&a_1, a); - secp256k1_gej_add_ge(r, r, &a_1); + secp256k1_gej_add_ge(&tmp, r, &a_1); - secp256k1_gej_cmov(r, &tmp, skew_1 == 2); + secp256k1_gej_cmov(r, &tmp, skew_1); if (size > 128) { secp256k1_ge a_lam; secp256k1_ge_mul_lambda(&a_lam, &a_1); - secp256k1_gej_add_ge(r, r, &a_lam); secp256k1_gej_add_ge(&tmp, r, &a_lam); - secp256k1_gej_cmov(r, &tmp, skew_lam == 2); + secp256k1_gej_cmov(r, &tmp, skew_lam); } } } diff --git a/src/tests.c b/src/tests.c index fd5e1eb7d..1488341cf 100644 --- a/src/tests.c +++ b/src/tests.c @@ -4522,7 +4522,7 @@ void test_constant_wnaf(const secp256k1_scalar *number, int w) { secp256k1_scalar_add(&x, &x, &t); } /* Skew num because when encoding numbers as odd we use an offset */ - secp256k1_scalar_set_int(&scalar_skew, 1 << (skew == 2)); + secp256k1_scalar_set_int(&scalar_skew, skew); secp256k1_scalar_add(&num, &num, &scalar_skew); CHECK(secp256k1_scalar_eq(&x, &num)); }