-
Notifications
You must be signed in to change notification settings - Fork 0
/
liveness.c
333 lines (272 loc) · 9.95 KB
/
liveness.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
#include "liveness.h"
#include "bit_twiddle.h"
#include "util.h"
#include "log.h"
#include "alloc.h"
#include "bitset.h"
#include "ir/ir.h"
static void op_used_callback(struct ir_op **op, void *cb_metadata) {
struct interval_callback_data *cb = cb_metadata;
struct interval *interval = &cb->data->intervals[(*op)->id];
interval->end = MAX(interval->end, cb->op->id);
}
// walks across the blocks to determine the end range for a phi's dependency
static size_t walk_basicblock(struct ir_func *irb, bool *basicblocks_visited,
struct ir_op *source_phi,
struct ir_basicblock *basicblock) {
if (!basicblock || basicblocks_visited[basicblock->id]) {
return 0;
}
basicblocks_visited[basicblock->id] = true;
debug("now walking %zu", basicblock->id);
size_t this = basicblock->last->last->id;
size_t target_bb = source_phi->stmt->basicblock->id;
switch (basicblock->ty) {
case IR_BASICBLOCK_TY_SWITCH: {
size_t m = 0;
for (size_t i = 0; i < basicblock->switch_case.num_cases; i++) {
size_t m_case = walk_basicblock(irb, basicblocks_visited, source_phi,
basicblock->switch_case.cases[i].target);
m = MAX(m, m_case);
}
return MAX(this, m);
}
case IR_BASICBLOCK_TY_SPLIT: {
size_t m_false = walk_basicblock(irb, basicblocks_visited, source_phi,
basicblock->split.false_target);
size_t m_true = walk_basicblock(irb, basicblocks_visited, source_phi,
basicblock->split.true_target);
return MAX(this, MAX(m_true, m_false));
}
case IR_BASICBLOCK_TY_MERGE:
if (basicblock->merge.target->id == target_bb) {
return this;
}
size_t target = walk_basicblock(irb, basicblocks_visited, source_phi,
basicblock->merge.target);
return MAX(this, target);
case IR_BASICBLOCK_TY_RET:
// this means this path did *not* reach the phi
return 0;
}
}
static unsigned *find_basicblock_ranges(struct ir_func *irb) {
// FIXME: *very* memory expensive |BBs|^2 space
unsigned *basicblock_max_id = arena_alloc(
irb->arena, sizeof(*basicblock_max_id) * irb->basicblock_count *
irb->basicblock_count);
memset(basicblock_max_id, 0,
sizeof(*basicblock_max_id) * irb->basicblock_count *
irb->basicblock_count);
bool *basicblocks_visited = arena_alloc(
irb->arena, sizeof(*basicblocks_visited) * irb->basicblock_count);
// this calculates the maximum liveliness between two blocks
// the liveliness of a phi-dependent is `basicblock_max_id[phi->bb->id *
// num_bb + dependent->bb->id]`
// FIXME: this can be done MUCH more efficiently
struct ir_basicblock *basicblock = irb->first;
while (basicblock) {
struct ir_stmt *stmt = basicblock->first;
while (stmt) {
struct ir_op *op = stmt->first;
while (op) {
if (op->ty == IR_OP_TY_PHI) {
for (size_t i = 0; i < op->phi.num_values; i++) {
struct ir_op *value = op->phi.values[i];
// HACK: this flag needs to enter the phi node so LSRA spills phis
// maybe ir_lcl should have flag instead?
if (value->flags & IR_OP_FLAG_MUST_SPILL) {
op->flags |= IR_OP_FLAG_MUST_SPILL;
}
size_t len_id = (basicblock->id * irb->basicblock_count) +
value->stmt->basicblock->id;
size_t len;
if (basicblock_max_id[len_id]) {
len = basicblock_max_id[len_id];
} else {
memset(basicblocks_visited, 0,
sizeof(*basicblocks_visited) * irb->basicblock_count);
len = walk_basicblock(irb, basicblocks_visited, op,
value->stmt->basicblock);
basicblock_max_id[len_id] = (unsigned)len;
}
}
}
op = op->succ;
}
stmt = stmt->succ;
}
basicblock = basicblock->succ;
}
return basicblock_max_id;
}
/* Builds the intervals for each value in the SSA representation
- IDs are rebuilt before calling this so that op ID can be used as an
inreasing inex
- indexes can be non-sequential but must be increasing
*/
struct interval_data construct_intervals(struct ir_func *irb) {
// first rebuild ids so they are sequential and increasing
rebuild_ids(irb);
unsigned *bb_ranges = find_basicblock_ranges(irb);
struct interval_data data;
data.intervals =
arena_alloc(irb->arena, sizeof(*data.intervals) * irb->op_count);
data.num_intervals = 0;
memset(data.intervals, 0, sizeof(*data.intervals) * irb->op_count);
// NOTE: this logic relies on MOV <PARAM> instructions existing for all params
// AND being in order of params
size_t arg_regs = 0;
struct ir_basicblock *basicblock = irb->first;
while (basicblock) {
struct ir_stmt *stmt = basicblock->first;
while (stmt) {
struct ir_op *op = stmt->first;
while (op) {
struct interval *interval = &data.intervals[op->id];
if (op->ty == IR_OP_TY_MOV && op->mov.value == NULL) {
op->reg =
(struct ir_reg){.ty = IR_REG_TY_INTEGRAL, .idx = arg_regs++};
} else {
// // reset registers unless flags because flags is never allocated
// if (op->reg != REG_FLAGS && !(op->flags &
// IR_OP_FLAG_DONT_GIVE_SLOT)) {
// op->reg = NO_REG;
// }
}
debug_assert(op->id < irb->op_count,
"out of range! (id %zu with opcount %zu)", op->id,
irb->op_count);
interval->op = op;
interval->start = op->id;
// we can get intervals with an end before their start if the value is
// unused fix them up to be valid
if (interval->end < interval->start) {
interval->end = interval->start;
}
debug_assert(op->metadata == NULL,
"metadata left over in op during liveness analysis, will "
"be overwritten");
op->metadata = interval;
struct interval_callback_data cb_data = {.op = op, .data = &data};
walk_op_uses(op, op_used_callback, &cb_data);
data.num_intervals++;
op = op->succ;
}
stmt = stmt->succ;
}
basicblock = basicblock->succ;
}
// now we use each phi to set it (and its dependent intervals) to the min/max
// of the dependents
basicblock = irb->first;
while (basicblock) {
struct ir_stmt *stmt = basicblock->first;
while (stmt) {
struct ir_op *op = stmt->first;
while (op) {
if (op->ty == IR_OP_TY_PHI) {
struct interval *interval = &data.intervals[op->id];
size_t start = interval->start;
size_t end = interval->end;
for (size_t i = 0; i < op->phi.num_values; i++) {
struct ir_op *dependent = op->phi.values[i];
struct interval *dependent_interval =
&data.intervals[dependent->id];
size_t path_id = op->stmt->basicblock->id * irb->basicblock_count +
dependent->stmt->basicblock->id;
debug_assert(bb_ranges[path_id], "bb_len was 0");
size_t dependent_path_end = bb_ranges[path_id];
start = MIN(start, dependent_interval->start);
end = MAX(end, dependent_path_end);
}
interval->start = start;
interval->end = end;
for (size_t i = 0; i < op->phi.num_values; i++) {
struct ir_op *dependent = op->phi.values[i];
struct interval *dependent_interval =
&data.intervals[dependent->id];
dependent_interval->start =
MIN(dependent_interval->start, interval->start);
dependent_interval->end =
MAX(dependent_interval->end, interval->end);
}
}
op = op->succ;
}
stmt = stmt->succ;
}
basicblock = basicblock->succ;
}
return data;
}
void print_live_regs(FILE *file, const struct ir_reg_usage *reg_usage) {
fslogsl(file, " - LIVE REGS (");
struct bitset_iter gp_iter =
bitset_iter(reg_usage->gp_registers_used, 0, true);
struct bitset_iter fp_iter =
bitset_iter(reg_usage->fp_registers_used, 0, true);
size_t i;
bool first = true;
while (bitset_iter_next(&gp_iter, &i)) {
if (first) {
first = false;
fslogsl(file, ", ");
}
fslogsl(file, "R%zu", i);
}
if (bitset_any(reg_usage->gp_registers_used, true) &&
bitset_any(reg_usage->fp_registers_used, true)) {
fslogsl(file, ", ");
}
first = true;
while (bitset_iter_next(&fp_iter, &i)) {
if (first) {
first = false;
fslogsl(file, ", ");
}
fslogsl(file, "F%zu", i);
}
fslogsl(file, ")");
}
void print_ir_intervals(FILE *file, struct ir_op *op, UNUSED_ARG(void *metadata)) {
struct interval *interval = op->metadata;
if (interval) {
invariant_assert(interval->op->id == op->id, "intervals are not ID keyed");
fslogsl(file, "start=%05zu, end=%05zu | ", interval->start, interval->end);
} else {
fslogsl(file, "no associated interval | ");
}
switch (op->reg.ty) {
case IR_REG_TY_NONE:
fslogsl(file, " (UNASSIGNED)");
break;
case IR_REG_TY_SPILLED:
if (op->lcl) {
fslogsl(file, " (SPILLED), LCL=%zu", op->lcl->id);
} else {
fslogsl(file, " (SPILLED), LCL=(UNASSIGNED)");
}
break;
case IR_REG_TY_FLAGS:
fslogsl(file, " (FLAGS)");
break;
case IR_REG_TY_INTEGRAL:
if (op->flags & IR_OP_FLAG_DONT_GIVE_REG) {
fslogsl(file, " (DONT)");
} else {
fslogsl(file, " register=R%zu", op->reg.idx);
}
break;
case IR_REG_TY_FP:
if (op->flags & IR_OP_FLAG_DONT_GIVE_REG) {
fslogsl(file, " (DONT)");
} else {
fslogsl(file, " register=F%zu", op->reg.idx);
}
break;
}
// if (interval && interval->op) {
// print_live_regs(file, &interval->op->reg_usage);
// }
}