-
Notifications
You must be signed in to change notification settings - Fork 57
/
triangle_lyness_rule.html
368 lines (329 loc) · 10.4 KB
/
triangle_lyness_rule.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
<html>
<head>
<title>
TRIANGLE_LYNESS_RULE - Quadrature Rules for the Triangle
</title>
</head>
<body bgcolor="#EEEEEE" link="#CC0000" alink="#FF3300" vlink="#000055">
<h1 align = "center">
TRIANGLE_LYNESS_RULE <br> Quadrature Rules for the Triangle
</h1>
<hr>
<p>
<b>TRIANGLE_LYNESS_RULE</b>
is a MATLAB library which
produces the Lyness-Jespersen family of quadrature rules
over the interior of a triangle in 2D.
</p>
<p>
The rules have the following orders (number of points) and
precisions (maximum degree of polynomials whose integrals they
can compute exactly):
<table border="1" align="center">
<tr>
<th>Rule</th><th>Order</th><th>Precision</th>
</tr>
<tr>
<td>0</td><td> 1</td><td> 1</td>
</tr>
<tr>
<td>1</td><td> 3</td><td> 2</td>
</tr>
<tr>
<td>2</td><td> 4</td><td> 2</td>
</tr>
<tr>
<td>3</td><td> 4</td><td> 3</td>
</tr>
<tr>
<td>4</td><td> 7</td><td> 3</td>
</tr>
<tr>
<td>5</td><td> 6</td><td> 4</td>
</tr>
<tr>
<td>6</td><td> 10</td><td> 4</td>
</tr>
<tr>
<td>7</td><td> 9</td><td> 4</td>
</tr>
<tr>
<td>8</td><td> 7</td><td> 5</td>
</tr>
<tr>
<td>9</td><td> 10</td><td> 5</td>
</tr>
<tr>
<td>10</td><td> 12</td><td> 6</td>
</tr>
<tr>
<td>11</td><td> 16</td><td> 6</td>
</tr>
<tr>
<td>12</td><td> 13</td><td> 6</td>
</tr>
<tr>
<td>13</td><td> 13</td><td> 7</td>
</tr>
<tr>
<td>14</td><td> 16</td><td> 7</td>
</tr>
<tr>
<td>15</td><td> 16</td><td> 8</td>
</tr>
<tr>
<td>16</td><td> 21</td><td> 8</td>
</tr>
<tr>
<td>17</td><td> 16</td><td> 8</td>
</tr>
<tr>
<td>18</td><td> 19</td><td> 9</td>
</tr>
<tr>
<td>19</td><td> 22</td><td> 9</td>
</tr>
<tr>
<td>20</td><td> 27</td><td>11</td>
</tr>
<tr>
<td>21</td><td> 28</td><td>11</td>
</tr>
</table>
</p>
<h3 align = "center">
Licensing:
</h3>
<p>
The computer code and data files described and made available on this
web page are distributed under
<a href = "../../txt/gnu_lgpl.txt">the GNU LGPL license.</a>
</p>
<h3 align = "center">
Languages:
</h3>
<p>
<b>TRIANGLE_LYNESS_RULE</b> is available in
<a href = "../../cpp_src/triangle_lyness_rule/triangle_lyness_rule.html">a C++ version</a> and
<a href = "../../f_src/triangle_lyness_rule/triangle_lyness_rule.html">a FORTRAN90 version</a> and
<a href = "../../m_src/triangle_lyness_rule/triangle_lyness_rule.html">a MATLAB version.</a>
</p>
<h3 align = "center">
Related Data and Programs:
</h3>
<p>
<a href = "../../m_src/cube_felippa_rule/cube_felippa_rule.html">
CUBE_FELIPPA_RULE</a>,
a MATLAB library which
returns the points and weights of a Felippa quadrature rule
over the interior of a cube in 3D.
</p>
<p>
<a href = "../../m_src/pyramid_felippa_rule/pyramid_felippa_rule.html">
PYRAMID_FELIPPA_RULE</a>,
a MATLAB library which
returns Felippa's quadratures rules for approximating integrals
over the interior of a pyramid in 3D.
</p>
<p>
<a href = "../../m_src/simplex_gm_rule/simplex_gm_rule.html">
SIMPLEX_GM_RULE</a>,
a MATLAB library which
defines Grundmann-Moeller quadrature rules
over the interior of a simplex in M dimensions.
</p>
<p>
<a href = "../../m_src/square_felippa_rule/square_felippa_rule.html">
SQUARE_FELIPPA_RULE</a>,
a MATLAB library which
returns the points and weights of a Felippa quadrature rule
over the interior of a square in 2D.
</p>
<p>
<a href = "../../m_src/stroud/stroud.html">
STROUD</a>,
a MATLAB library which
contains quadrature rules for a variety of unusual areas,
surfaces and volumes in 2D, 3D and M-dimensions.
</p>
<p>
<a href = "../../m_src/tetrahedron_felippa_rule/tetrahedron_felippa_rule.html">
TETRAHEDRON_FELIPPA_RULE</a>,
a MATLAB library which
returns Felippa's quadratures rules for approximating integrals
over the interior of a tetrahedron in 3D.
</p>
<p>
<a href = "../../m_src/triangle_dunavant_rule/triangle_dunavant_rule.html">
TRIANGLE_DUNAVANT_RULE</a>,
a MATLAB library which
sets up a Dunavant quadrature rule
over the interior of a triangle in 2D.
</p>
<p>
<a href = "../../m_src/triangle_exactness/triangle_exactness.html">
TRIANGLE_EXACTNESS</a>,
a MATLAB program which
investigates the polynomial exactness of a quadrature rule
over the interior of a triangle in 2D.
</p>
<p>
<a href = "../../m_src/triangle_fekete_rule/triangle_fekete_rule.html">
TRIANGLE_FEKETE_RULE</a>,
a MATLAB library which
defines Fekete rules for quadrature or interpolation
over the interior of a triangle in 2D.
</p>
<p>
<a href = "../../m_src/triangle_felippa_rule/triangle_felippa_rule.html">
TRIANGLE_FELIPPA_RULE</a>,
a MATLAB library which
returns Felippa's quadratures rules for approximating integrals
over the interior of a triangle in 2D.
</p>
<p>
<a href = "../../m_src/triangle_monte_carlo/triangle_monte_carlo.html">
TRIANGLE_MONTE_CARLO</a>,
a MATLAB program which
uses the Monte Carlo method to estimate integrals
over the interior of a triangle in 2D.
</p>
<p>
<a href = "../../m_src/triangle_ncc_rule/triangle_ncc_rule.html">
TRIANGLE_NCC_RULE</a>,
a MATLAB library which
defines Newton-Cotes Closed (NCC) quadrature rules
over the interior of a triangle in 2D.
</p>
<p>
<a href = "../../m_src/triangle_nco_rule/triangle_nco_rule.html">
TRIANGLE_NCO_RULE</a>,
a MATLAB library which
defines Newton-Cotes Open (NCO) quadrature rules
over the interior of a triangle in 2D.
</p>
<p>
<a href = "../../m_src/triangle_wandzura_rule/triangle_wandzura_rule.html">
TRIANGLE_WANDZURA_RULE</a>,
a MATLAB library which
sets up a quadrature rule of exactness 5, 10, 15, 20, 25 or 30
over the interior of a triangle in 2D.
</p>
<p>
<a href = "../../m_src/wedge_felippa_rule/wedge_felippa_rule.html">
WEDGE_FELIPPA_RULE</a>,
a MATLAB library which
returns quadratures rules for approximating integrals
over the interior of the unit wedge in 3D.
</p>
<h3 align = "center">
Reference:
</h3>
<p>
<ol>
<li>
James Lyness, Dennis Jespersen,<br>
Moderate Degree Symmetric Quadrature Rules for the Triangle,<br>
Journal of the Institute of Mathematics and its Applications,<br>
Volume 15, Number 1, February 1975, pages 19-32.
</li>
</ol>
</p>
<h3 align = "center">
Source Code:
</h3>
<p>
<ul>
<li>
<a href = "i4_modp.m">i4_modp.m</a>
returns the nonnegative remainder of I4 division.
</li>
<li>
<a href = "i4_wrap.m">i4_wrap.m</a>
forces an I4 to lie between given limits by wrapping.
</li>
<li>
<a href = "lyness_order.m">lyness_order.m</a>
returns the order of a Lyness quadrature rule.
</li>
<li>
<a href = "lyness_precision.m">lyness_precision.m</a>
returns the precision of a Lyness quadrature rule.
</li>
<li>
<a href = "lyness_rule.m">lyness_rule.m</a>
returns the points and weights of a Lyness quadrature rule.
</li>
<li>
<a href = "lyness_rule_num.m">lyness_rule_num.m</a>
returns the number of Lyness quadrature rules.
</li>
<li>
<a href = "lyness_suborder.m">lyness_suborder.m</a>
returns the suborders for a Lyness rule.
</li>
<li>
<a href = "lyness_suborder_num.m">lyness_suborder_num.m</a>
returns the number of suborders for a Lyness rule.
</li>
<li>
<a href = "lyness_subrule.m">lyness_subrule.m</a>
returns a compressed Lyness rule.
</li>
<li>
<a href = "timestamp.m">timestamp.m</a>
prints the current YMDHMS date as a time stamp.
</li>
</ul>
</p>
<h3 align = "center">
Examples and Tests:
</h3>
<p>
<ul>
<li>
<a href = "triangle_lyness_rule_test.m">triangle_lyness_rule_test.m</a>,
a sample calling program.
</li>
<li>
<a href = "triangle_lyness_rule_test_output.txt">triangle_lyness_rule_test_output.txt</a>,
the output file.
</li>
<li>
<a href = "triangle_lyness_rule_test01.m">triangle_lyness_rule_test01.m</a>,
tests LYNESS_RULE_NUM, LYNESS_DEGREE, LYNESS_ORDER_NUM.
</li>
<li>
<a href = "triangle_lyness_rule_test02.m">triangle_lyness_rule_test02.m</a>,
performs the weight sum test on Lyness rules.
</li>
<li>
<a href = "triangle_lyness_rule_test03.m">triangle_lyness_rule_test03.m</a>,
performs the barycentric coordinate sum test on Lyness rules.
</li>
<li>
<a href = "triangle_lyness_rule_test04.m">triangle_lyness_rule_test04.m</a>,
prints a rule generated by LYNESS_RULE.
</li>
<li>
<a href = "triangle_lyness_rule_test05.m">triangle_lyness_rule_test05.m</a>,
writes a rule created by LYNESS_RULE to a file.
</li>
<li>
<a href = "triangle_lyness_rule_test06.m">triangle_lyness_rule_test06.m</a>,
tests the Lyness rules for exact integration of monomials.
</li>
</ul>
</p>
<p>
You can go up one level to <a href = "../m_src.html">
the MATLAB source codes</a>.
</p>
<hr>
<i>
Last revised on 28 June 2014.
</i>
<!-- John Burkardt -->
</body>
<!-- Initial HTML skeleton created by HTMLINDEX. -->
</html>