-
Notifications
You must be signed in to change notification settings - Fork 57
/
toms443.html
170 lines (145 loc) · 4.26 KB
/
toms443.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
<html>
<head>
<title>
TOMS443 - Evaluation of Lambert's W function.
</title>
</head>
<body bgcolor="#EEEEEE" link="#CC0000" alink="#FF3300" vlink="#000055">
<h1 align = "center">
TOMS443 <br> Evaluation of Lambert's W function.
</h1>
<hr>
<p>
<b>TOMS443</b>
is a MATLAB library which
evaluates Lambert's W function.
This is a version of ACM TOMS algorithm 443,
by Fritsch, Shafer and Crowley.
</p>
<p>
Lambert's W function W(X) satisfies the equation
<pre>
W(x) * exp ( W(x) ) = x
</pre>
</p>
<p>
The text of many ACM TOMS algorithms is available online
through ACM:
<a href = "http://www.acm.org/pubs/calgo/">
http://www.acm.org/pubs/calgo</a>
or NETLIB:
<a href = "http://www.netlib.org/toms/index.html">
http://www.netlib.org/toms/index.html</a>.
</p>
<h3 align = "center">
Languages:
</h3>
<p>
<b>TOMS443</b> is available in
<a href = "../../c_src/toms443/toms443.html">a C version</a> and
<a href = "../../cpp_src/toms443/toms443.html">a C++ version</a> and
<a href = "../../f77_src/toms443/toms443.html">a FORTRAN77 version</a> and
<a href = "../../f_src/toms443/toms443.html">a FORTRAN90 version</a> and
<a href = "../../m_src/toms443/toms443.html">a MATLAB version</a>.
</p>
<h3 align = "center">
Related Data and Programs:
</h3>
<p>
<a href = "../../m_src/test_values/test_values.html">
TEST_VALUES</a>,
a MATLAB library which
contains routines which return sample values of various functions,
including the modified beta function, and the logarithm of the
gamma function.
</p>
<p>
<a href = "../../m_src/toms743/toms743.html">
TOMS743</a>,
a MATLAB library which
evaluates Lambert's W function.
This is a version of ACM TOMS algorithm 743,
by Barry, Barry and Culligan-Hensley.
</p>
<h3 align = "center">
Reference:
</h3>
<p>
<ol>
<li>
Fred Fritsch, RE Shafer, WP Crowley,<br>
Algorithm 443:
Solution of the Transcendental Equation W*exp(W)=X,<br>
Communications of the ACM,<br>
Volume 16, Number 1, February 1973, pages 123-124.
</li>
<li>
Andrew Barry, S. J. Barry, Patricia Culligan-Hensley,<br>
Algorithm 743: WAPR - A Fortran routine for calculating real
values of the W-function,<br>
ACM Transactions on Mathematical Software,<br>
Volume 21, Number 2, June 1995, pages 172-181.
</li>
</ol>
</p>
<h3 align = "center">
Source Code:
</h3>
<p>
<ul>
<li>
<a href = "lambert_w_values.m">lambert_w_values.m</a>,
returns selected values of the Lambert W function.
</li>
<li>
<a href = "timestamp.m">timestamp.m</a>,
prints the YMDHMS date as a timestamp.
</li>
<li>
<a href = "wew_a.m">wew_a.m</a>,
evaluates Lambert's W function using
code appropriate for a CDC 6600 (default 64 bit precision).
</li>
<li>
<a href = "wew_b.m">wew_b.m</a>,
evaluates Lambert's W function using
code appropriate for a computer with precision of
about 3.0E-07.
</li>
</ul>
</p>
<h3 align = "center">
Examples and Tests:
</h3>
<p>
<ul>
<li>
<a href = "toms443_test.m">toms443_test.m</a>,
a sample calling program.
</li>
<li>
<a href = "toms443_test_output.txt">toms443_test_output.txt</a>,
the output file.
</li>
<li>
<a href = "toms443_test01.m">toms443_test01.m</a>,
tests wew_a();
</li>
<li>
<a href = "toms443_test02.m">toms443_test02.m</a>,
tests wew_b();
</li>
</ul>
</p>
<p>
You can go up one level to <a href = "../m_src.html">
the MATLAB source codes</a>.
</p>
<hr>
<i>
Last revised on 11 June 2014.
</i>
<!-- John Burkardt -->
</body>
<!-- Initial HTML skeleton created by HTMLINDEX. -->
</html>