-
Notifications
You must be signed in to change notification settings - Fork 57
/
test_int_2d.html
350 lines (320 loc) · 10 KB
/
test_int_2d.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
<html>
<head>
<title>
TEST_INT_2D - Quadrature Tests for 2D Finite Intervals
</title>
</head>
<body bgcolor="#EEEEEE" link="#CC0000" alink="#FF3300" vlink="#000055">
<h1 align = "center">
TEST_INT_2D <br> Quadrature Tests for 2D Finite Intervals
</h1>
<hr>
<p>
<b>TEST_INT_2D</b>
is a MATLAB program which
evaluates test integrands.
</p>
<p>
The test integrands would normally be used to testing 2D
quadrature software. It is possible to invoke a
particular function by number, or to try out all available functions,
as demonstrated in the sample calling program.
</p>
<p>
The current set of problems is:
<ol>
<li>
integral on [0,1]x[0,1] of f(x,y) = 1 / ( 1 - x * y );
singular at [1,1].
</li>
<li>
integral on [-1,1]x[-1,1] of f(x,y) = 1 / sqrt ( 1 - x * x * y * y );
singular at [1,1], [1,-1], [-1,1], [-1,-1];
</li>
<li>
integral on [-1,1]x[-1,1] of f(x,y) = 1 / sqrt ( 2 - x - y );
singular at [1,1];
</li>
<li>
integral on [-1,1]x[-1,1] of f(x,y) = 1 / sqrt ( 3 - x - 2 * y );
singular along the line y = ( 3 - x ) / 2.
</li>
<li>
integral on [0,1]x[0,1] of f(x,y) = sqrt ( x * y );
singular along the lines y = 0 and x = 0.
</li>
<li>
integral on [-1,1]x[-1,1] of f(x,y) = abs ( x * x + y * y - 1/4 );
nondifferentiable along x*x+y*y=1/4.
</li>
<li>
integral on [0,1]x[0,1] of f(x,y) = sqrt ( abs ( x - y ) );
nondifferentiable along y = x.
</li>
<li>
integral on [0,5]x[0,5] of f(x,y) = exp ( - ( (x-4)^2 + (y-1)^2 ) ),
highly localized near (4,1).
</li>
</ol>
</p>
<p>
The library includes not just the integrand, but also the interval
of integration, and the exact value of the integral.
Thus, for each integrand function, three subroutines are supplied. For
instance, for function #5, we have the routines:
<ul>
<li>
<b>P05_FUN</b> evaluates the integrand for problem 5.
</li>
<li>
<b>P05_LIM</b> returns the integration limits for problem 5.
</li>
<li>
<b>P05_EXACT</b> returns the exact integral for problem 5.
</li>
</ul>
So once you have the calling sequences for these routines, you
can easily evaluate the function, or integrate it between the
appropriate limits, or compare your estimate of the integral
to the exact value.
</p>
<p>
Moreover, since the same interface is used for each function,
if you wish to work with problem 2 instead, you simply change
the "05" to "02" in your routine calls.
</p>
<p>
If you wish to call <i>all</i> of the functions, then you
simply use the generic interface, which again has three
subroutines, but which requires you to specify the problem
number as an extra input argument:
<ul>
<li>
<b>P00_FUN</b> evaluates the integrand for any problem.
</li>
<li>
<b>P00_LIM</b> returns the integration limits for any problem.
</li>
<li>
<b>P00_EXACT</b> returns the exact integral for any problem.
</li>
</ul>
</p>
<h3 align = "center">
Licensing:
</h3>
<p>
The computer code and data files described and made available on this web page
are distributed under
<a href = "../../txt/gnu_lgpl.txt">the GNU LGPL license.</a>
</p>
<h3 align = "center">
Languages:
</h3>
<p>
<b>TEST_INT_2D</b> is available in
<a href = "../../c_src/test_int_2d/test_int_2d.html">a C version</a> and
<a href = "../../cpp_src/test_int_2d/test_int_2d.html">a C++ version</a> and
<a href = "../../f_src/test_int_2d/test_int_2d.html">a FORTRAN90 version</a> and
<a href = "../../f77_src/test_int_2d/test_int_2d.html">a FORTRAN77 version</a> and
<a href = "../../m_src/test_int_2d/test_int_2d.html">a MATLAB version</a>.
</p>
<h3 align = "center">
Related Data and Programs:
</h3>
<p>
<a href = "../../m_src/test_int_hermite/test_int_hermite.html">
TEST_INT_HERMITE</a>,
a MATLAB library which
defines some test integration problems over infinite intervals.
</p>
<p>
<a href = "../../m_src/test_int_laguerre/test_int_laguerre.html">
TEST_INT_LAGUERRE</a>,
a MATLAB library which
defines test integrands for integration over [ALPHA,+Infinity).
</p>
<h3 align = "center">
Reference:
</h3>
<p>
<ol>
<li>
Gwynne Evans,<br>
Practical Numerical Integration,<br>
Wiley, 1993,<br>
ISBN: 047193898X,<br>
LC: QA299.3E93.
</li>
</ol>
</p>
<h3 align = "center">
Source Code:
</h3>
<p>
<ul>
<li>
<a href = "legendre_dr_compute.m">legendre_dr_compute.m</a>,
Gauss-Legendre quadrature by Davis-Rabinowitz method.
</li>
<li>
<a href = "p00_exact.m">p00_exact.m</a>
returns the exact integral for any problem.
</li>
<li>
<a href = "p00_fun.m">p00_fun.m</a>
evaluates the integrand for any problem.
</li>
<li>
<a href = "p00_lim.m">p00_lim.m</a>
returns the integration limits for any problem.
</li>
<li>
<a href = "p00_problem_num.m">p00_problem_num.m</a>
returns the number of test integration problems.
</li>
<li>
<a href = "p01_exact.m">p01_exact.m</a>
returns the exact integral for problem 1.
</li>
<li>
<a href = "p01_fun.m">p01_fun.m</a>
evaluates the integrand for problem 1.
</li>
<li>
<a href = "p01_lim.m">p01_lim.m</a>
returns the integration limits for problem 1.
</li>
<li>
<a href = "p02_exact.m">p02_exact.m</a>
returns the exact integral for problem 2.
</li>
<li>
<a href = "p02_fun.m">p02_fun.m</a>
evaluates the integrand for problem 2.
</li>
<li>
<a href = "p02_lim.m">p02_lim.m</a>
returns the integration limits for problem 2.
</li>
<li>
<a href = "p03_exact.m">p03_exact.m</a>
returns the exact integral for problem 3.
</li>
<li>
<a href = "p03_fun.m">p03_fun.m</a>
evaluates the integrand for problem 3.
</li>
<li>
<a href = "p03_lim.m">p03_lim.m</a>
returns the integration limits for problem 3.
</li>
<li>
<a href = "p04_exact.m">p04_exact.m</a>
returns the exact integral for problem 4.
</li>
<li>
<a href = "p04_fun.m">p04_fun.m</a>
evaluates the integrand for problem 4.
</li>
<li>
<a href = "p04_lim.m">p04_lim.m</a>
returns the integration limits for problem 4.
</li>
<li>
<a href = "p05_exact.m">p05_exact.m</a>
returns the exact integral for problem 5.
</li>
<li>
<a href = "p05_fun.m">p05_fun.m</a>
evaluates the integrand for problem 5.
</li>
<li>
<a href = "p05_lim.m">p05_lim.m</a>
returns the integration limits for problem 5.
</li>
<li>
<a href = "p06_exact.m">p06_exact.m</a>
returns the exact integral for problem 6.
</li>
<li>
<a href = "p06_fun.m">p06_fun.m</a>
evaluates the integrand for problem 6.
</li>
<li>
<a href = "p06_lim.m">p06_lim.m</a>
returns the integration limits for problem 6.
</li>
<li>
<a href = "p07_exact.m">p07_exact.m</a>
returns the exact integral for problem 7.
</li>
<li>
<a href = "p07_fun.m">p07_fun.m</a>
evaluates the integrand for problem 7.
</li>
<li>
<a href = "p07_lim.m">p07_lim.m</a>
returns the integration limits for problem 7.
</li>
<li>
<a href = "p08_exact.m">p08_exact.m</a>
returns the exact integral for problem 8.
</li>
<li>
<a href = "p08_fun.m">p08_fun.m</a>
evaluates the integrand for problem 8.
</li>
<li>
<a href = "p08_lim.m">p08_lim.m</a>
returns the integration limits for problem 8.
</li>
<li>
<a href = "r8mat_uniform_01.m">r8mat_uniform_01.m</a>
returns a unit pseudorandom R8MAT.
</li>
<li>
<a href = "timestamp.m">timestamp.m</a>
prints the current YMDHMS date as a time stamp.
</li>
</ul>
</p>
<h3 align = "center">
Examples and Tests:
</h3>
<p>
<ul>
<li>
<a href = "test_int_2d_test.m">test_int_2d_test.m</a>,
runs all the tests.
</li>
<li>
<a href = "test_int_2d_test01.m">test_int_2d_test01.m</a>,
applies Monte Carlo rules to the integrands.
</li>
<li>
<a href = "test_int_2d_test02.m">test_int_2d_test02.m</a>,
applies a product of composite midpoint rules.
</li>
<li>
<a href = "test_int_2d_test03.m">test_int_2d_test03.m</a>,
applies a product of Gauss-Legendre rules.
</li>
<li>
<a href = "test_int_2d_test_output.txt">test_int_2d_test_output.txt</a>,
the output file.
</li>
</ul>
</p>
<p>
You can go up one level to <a href = "../m_src.html">
the MATLAB source codes</a>.
</p>
<hr>
<i>
Last revised on 18 September 2011.
</i>
<!-- John Burkardt -->
</body>
<!-- Initial HTML skeleton created by HTMLINDEX. -->
</html>