-
Notifications
You must be signed in to change notification settings - Fork 57
/
rbf_interp_2d.html
544 lines (505 loc) · 17.8 KB
/
rbf_interp_2d.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
<html>
<head>
<title>
RBF_INTERP_2D - Radial Basis Function Interpolation in 2D
</title>
</head>
<body bgcolor="#eeeeee" link="#cc0000" alink="#ff3300" vlink="#000055">
<h1 align = "center">
RBF_INTERP_2D <br> Radial Basis Function Interpolation in 2D
</h1>
<hr>
<p>
<b>RBF_INTERP_2D</b>
is a MATLAB library which
defines and evaluates radial basis function (RBF) interpolants to 2D data.
</p>
<p>
A radial basis interpolant is a useful, but expensive, technique for
definining a smooth function which interpolates a set of function values
specified at an arbitrary set of data points.
</p>
<p>
Given nd multidimensional points xd with function values fd, and a
basis function phi(r), the form of the interpolant is
<pre>
f(x) = sum ( 1 <= i <= nd ) w(i) * phi(||x-xd(i)||)
</pre>
where the weights w have been precomputed by solving
<pre>
sum ( 1 <= i <= nd ) w(i) * phi(||xd(j)-xd(i)||) = fd(j)
</pre>
</p>
<p>
Although the technique is generally applied in a multidimensional setting,
in this directory we look specifically at the case involving
2D data. This allows us to easily plot and compare the various
results.
</p>
<p>
Four families of radial basis functions are provided.
<ul>
<li>
phi1(r) = sqrt ( r^2 + r0^2 ) (multiquadric)
</li>
<li>
phi2(r) = 1 / sqrt ( r^2 + r0^2 ) (inverse multiquadric)
</li>
<li>
phi3(r) = r^2 * log ( r / r0 ) (thin plate spline)
</li>
<li>
phi4(r) = exp ( -0.5 r^2 / r0^2 ) (gaussian)
</li>
</ul>
Each uses a
"scale factor" r0, whose value is recommended to be greater than
the minimal distance between points, and rather less than the maximal distance.
Changing the value of r0 changes the shape of the interpolant function.
<p>
<p>
<b>RBF_INTERP_2D</b> needs access to the R8LIB library. The test program
also needs access to the TEST_INTERP_2D library.
</p>
<h3 align = "center">
Licensing:
</h3>
<p>
The computer code and data files described and made available on this web page
are distributed under
<a href = "../../txt/gnu_lgpl.txt">the GNU LGPL license.</a>
</p>
<h3 align = "center">
Languages:
</h3>
<p>
<b>RBF_INTERP_2D</b> is available in
<a href = "../../c_src/rbf_interp_2d/rbf_interp_2d.html">a C version</a> and
<a href = "../../cpp_src/rbf_interp_2d/rbf_interp_2d.html">a C++ version</a> and
<a href = "../../f77_src/rbf_interp_2d/rbf_interp_2d.html">a FORTRAN77 version</a> and
<a href = "../../f_src/rbf_interp_2d/rbf_interp_2d.html">a FORTRAN90 version</a> and
<a href = "../../m_src/rbf_interp_2d/rbf_interp_2d.html">a MATLAB version</a>.
</p>
<h3 align = "center">
Related Data and Programs:
</h3>
<p>
<a href = "../../m_src/lagrange_interp_2d/lagrange_interp_2d.html">
LAGRANGE_INTERP_2D</a>,
a MATLAB library which
defines and evaluates the Lagrange polynomial p(x,y)
which interpolates a set of data depending on a 2D argument
that was evaluated on a product grid,
so that p(x(i),y(j)) = z(i,j).
</p>
<p>
<a href = "../../m_src/padua/padua.html">
PADUA</a>,
a MATLAB library which
returns the points and weights for Padu sets, useful for interpolation
in 2D. MATLAB graphics are used to plot the points.
</p>
<p>
<a href = "../../m_src/pwl_interp_2d/pwl_interp_2d.html">
PWL_INTERP_2D</a>,
a MATLAB library which
evaluates a piecewise linear interpolant to data defined on
a regular 2D grid.
</p>
<p>
<a href = "../../m_src/r8lib/r8lib.html">
R8LIB</a>,
a MATLAB library which
contains many utility routines, using double precision real (R8) arithmetic.
</p>
<p>
<a href = "../../m_src/rbf_interp_1d/rbf_interp_1d.html">
RBF_INTERP_1D</a>,
a MATLAB library which
defines and evaluates radial basis function (RBF) interpolants to 1D data.
</p>
<p>
<a href = "../../m_src/rbf_interp_nd/rbf_interp_nd.html">
RBF_INTERP_ND</a>,
a MATLAB library which
defines and evaluates radial basis function (RBF) interpolants to multidimensional data.
</p>
<p>
<a href = "../../m_src/shepard_interp_2d/shepard_interp_2d.html">
SHEPARD_INTERP_2D</a>,
a MATLAB library which
defines and evaluates Shepard interpolants to 2D data,
which are based on inverse distance weighting.
</p>
<p>
<a href = "../../m_src/test_interp_2d/test_interp_2d.html">
TEST_INTERP_2D</a>,
a MATLAB library which
defines test problems for interpolation of data z(x,y) of a 2D argument.
</p>
<p>
<a href = "../../m_src/toms886/toms886.html">
TOMS886</a>,
a MATLAB library which
defines the Padua points for interpolation in a 2D region,
including the rectangle, triangle, and ellipse,
by Marco Caliari, Stefano de Marchi, Marco Vianello.
This is a MATLAB version of ACM TOMS algorithm 886.
</p>
<p>
<a href = "../../m_src/vandermonde_interp_2d/vandermonde_interp_2d.html">
VANDERMONDE_INTERP_2D</a>,
a MATLAB library which
finds a polynomial interpolant to data z(x,y) of a 2D argument
by setting up and solving a linear system for the polynomial coefficients,
involving the Vandermonde matrix.
</p>
<h3 align = "center">
Reference:
</h3>
<p>
<ol>
<li>
Richard Franke,<br>
Scattered Data Interpolation: Tests of Some Methods,<br>
Mathematics of Computation,<br>
Volume 38, Number 157, January 1982, pages 181-200.
</li>
<li>
William Press, Brian Flannery, Saul Teukolsky, William Vetterling,<br>
Numerical Recipes in FORTRAN: The Art of Scientific Computing,<br>
Third Edition,<br>
Cambridge University Press, 2007,<br>
ISBN13: 978-0-521-88068-8,<br>
LC: QA297.N866.
</li>
</ol>
</p>
<h3 align = "center">
Source Code:
</h3>
<p>
<ul>
<li>
<a href = "phi1.m">phi1.m</a>,
evaluates the multiquadric radial basis function.
</li>
<li>
<a href = "phi2.m">phi2.m</a>,
evaluates the inverse multiquadric radial basis function.
</li>
<li>
<a href = "phi3.m">phi3.m</a>,
evaluates the thin-plate spline radial basis function.
</li>
<li>
<a href = "phi4.m">phi4.m</a>,
evaluates the gaussian radial basis function.
</li>
<li>
<a href = "rbf_interp.m">rbf_interp_1d.m</a>,
evaluates a radial basis function interpolant.
</li>
<li>
<a href = "rbf_weight.m">rbf_weight.m</a>,
computes weights for radial basis function interpolation.
</li>
</ul>
</p>
<h3 align = "center">
Examples and Tests:
</h3>
<p>
Running these tests requires access to the <b>test_interp_2d</b> library.
Should that library be available in a directory at the same level, this
can be accomplished with the command "addpath ( '../test_interp_2d' )".
<ul>
<li>
<a href = "rbf_interp_2d_test.m">rbf_interp_2d_test.m</a>, calls all the tests;
</li>
<li>
<a href = "rbf_interp_2d_test_output.txt">rbf_interp_2d_test_output.txt</a>,
the output file.
</li>
<li>
<a href = "rbf_interp_2d_test01.m">rbf_interp_2d_test01.m</a>,
tests a particular set of data and a particular RBF.
</li>
</ul>
</p>
<p>
The test program makes a number of plots.
<ul>
<li>
<a href = "p01_data.png">p01_data.png</a>,
the data for problem p01 with a linear interpolant.
</li>
<li>
<a href = "p01_phi1_poly.png">p01_phi1_poly.png</a>,
the data for problem p01 with a PHI1 RBF interpolant.
</li>
<li>
<a href = "p01_phi2_poly.png">p01_phi2_poly.png</a>,
the data for problem p01 with a PHI2 RBF interpolant.
</li>
<li>
<a href = "p01_phi3_poly.png">p01_phi3_poly.png</a>,
the data for problem p01 with a PHI3 RBF interpolant.
</li>
<li>
<a href = "p01_phi4_poly.png">p01_phi4_poly.png</a>,
the data for problem p01 with a PHI4 RBF interpolant.
</li>
<li>
<a href = "p02_data.png">p02_data.png</a>,
the data for problem p02 with a linear interpolant.
</li>
<li>
<a href = "p02_phi1_poly.png">p02_phi1_poly.png</a>,
the data for problem p02 with a PHI1 RBF interpolant.
</li>
<li>
<a href = "p02_phi2_poly.png">p02_phi2_poly.png</a>,
the data for problem p02 with a PHI2 RBF interpolant.
</li>
<li>
<a href = "p02_phi3_poly.png">p02_phi3_poly.png</a>,
the data for problem p02 with a PHI3 RBF interpolant.
</li>
<li>
<a href = "p02_phi4_poly.png">p02_phi4_poly.png</a>,
the data for problem p02 with a PHI4 RBF interpolant.
</li>
<li>
<a href = "p03_data.png">p03_data.png</a>,
the data for problem p03 with a linear interpolant.
</li>
<li>
<a href = "p03_phi1_poly.png">p03_phi1_poly.png</a>,
the data for problem p03 with a PHI1 RBF interpolant.
</li>
<li>
<a href = "p03_phi2_poly.png">p03_phi2_poly.png</a>,
the data for problem p03 with a PHI2 RBF interpolant.
</li>
<li>
<a href = "p03_phi3_poly.png">p03_phi3_poly.png</a>,
the data for problem p03 with a PHI3 RBF interpolant.
</li>
<li>
<a href = "p03_phi4_poly.png">p03_phi4_poly.png</a>,
the data for problem p03 with a PHI4 RBF interpolant.
</li>
<li>
<a href = "p04_data.png">p04_data.png</a>,
the data for problem p04 with a linear interpolant.
</li>
<li>
<a href = "p04_phi1_poly.png">p04_phi1_poly.png</a>,
the data for problem p04 with a PHI1 RBF interpolant.
</li>
<li>
<a href = "p04_phi2_poly.png">p04_phi2_poly.png</a>,
the data for problem p04 with a PHI2 RBF interpolant.
</li>
<li>
<a href = "p04_phi3_poly.png">p04_phi3_poly.png</a>,
the data for problem p04 with a PHI3 RBF interpolant.
</li>
<li>
<a href = "p04_phi4_poly.png">p04_phi4_poly.png</a>,
the data for problem p04 with a PHI4 RBF interpolant.
</li>
<li>
<a href = "p05_data.png">p05_data.png</a>,
the data for problem p05 with a linear interpolant.
</li>
<li>
<a href = "p05_phi1_poly.png">p05_phi1_poly.png</a>,
the data for problem p05 with a PHI1 RBF interpolant.
</li>
<li>
<a href = "p05_phi2_poly.png">p05_phi2_poly.png</a>,
the data for problem p05 with a PHI2 RBF interpolant.
</li>
<li>
<a href = "p05_phi3_poly.png">p05_phi3_poly.png</a>,
the data for problem p05 with a PHI3 RBF interpolant.
</li>
<li>
<a href = "p05_phi4_poly.png">p05_phi4_poly.png</a>,
the data for problem p05 with a PHI4 RBF interpolant.
</li>
<li>
<a href = "p06_data.png">p06_data.png</a>,
the data for problem p06 with a linear interpolant.
</li>
<li>
<a href = "p06_phi1_poly.png">p06_phi1_poly.png</a>,
the data for problem p06 with a PHI1 RBF interpolant.
</li>
<li>
<a href = "p06_phi2_poly.png">p06_phi2_poly.png</a>,
the data for problem p06 with a PHI2 RBF interpolant.
</li>
<li>
<a href = "p06_phi3_poly.png">p06_phi3_poly.png</a>,
the data for problem p06 with a PHI3 RBF interpolant.
</li>
<li>
<a href = "p06_phi4_poly.png">p06_phi4_poly.png</a>,
the data for problem p06 with a PHI4 RBF interpolant.
</li>
<li>
<a href = "p07_data.png">p07_data.png</a>,
the data for problem p07 with a linear interpolant.
</li>
<li>
<a href = "p07_phi1_poly.png">p07_phi1_poly.png</a>,
the data for problem p07 with a PHI1 RBF interpolant.
</li>
<li>
<a href = "p07_phi2_poly.png">p07_phi2_poly.png</a>,
the data for problem p07 with a PHI2 RBF interpolant.
</li>
<li>
<a href = "p07_phi3_poly.png">p07_phi3_poly.png</a>,
the data for problem p07 with a PHI3 RBF interpolant.
</li>
<li>
<a href = "p07_phi4_poly.png">p07_phi4_poly.png</a>,
the data for problem p07 with a PHI4 RBF interpolant.
</li>
<li>
<a href = "p08_data.png">p08_data.png</a>,
the data for problem p08 with a linear interpolant.
</li>
<li>
<a href = "p08_phi1_poly.png">p08_phi1_poly.png</a>,
the data for problem p08 with a PHI1 RBF interpolant.
</li>
<li>
<a href = "p08_phi2_poly.png">p08_phi2_poly.png</a>,
the data for problem p08 with a PHI2 RBF interpolant.
</li>
<li>
<a href = "p08_phi3_poly.png">p08_phi3_poly.png</a>,
the data for problem p08 with a PHI3 RBF interpolant.
</li>
<li>
<a href = "p08_phi4_poly.png">p08_phi4_poly.png</a>,
the data for problem p08 with a PHI4 RBF interpolant.
</li>
<li>
<a href = "p09_data.png">p09_data.png</a>,
the data for problem p09 with a linear interpolant.
</li>
<li>
<a href = "p09_phi1_poly.png">p09_phi1_poly.png</a>,
the data for problem p09 with a PHI1 RBF interpolant.
</li>
<li>
<a href = "p09_phi2_poly.png">p09_phi2_poly.png</a>,
the data for problem p09 with a PHI2 RBF interpolant.
</li>
<li>
<a href = "p09_phi3_poly.png">p09_phi3_poly.png</a>,
the data for problem p09 with a PHI3 RBF interpolant.
</li>
<li>
<a href = "p09_phi4_poly.png">p09_phi4_poly.png</a>,
the data for problem p09 with a PHI4 RBF interpolant.
</li>
<li>
<a href = "p10_data.png">p10_data.png</a>,
the data for problem p10 with a linear interpolant.
</li>
<li>
<a href = "p10_phi1_poly.png">p10_phi1_poly.png</a>,
the data for problem p10 with a PHI1 RBF interpolant.
</li>
<li>
<a href = "p10_phi2_poly.png">p10_phi2_poly.png</a>,
the data for problem p10 with a PHI2 RBF interpolant.
</li>
<li>
<a href = "p10_phi3_poly.png">p10_phi3_poly.png</a>,
the data for problem p10 with a PHI3 RBF interpolant.
</li>
<li>
<a href = "p10_phi4_poly.png">p10_phi4_poly.png</a>,
the data for problem p10 with a PHI4 RBF interpolant.
</li>
<li>
<a href = "p11_data.png">p11_data.png</a>,
the data for problem p11 with a linear interpolant.
</li>
<li>
<a href = "p11_phi1_poly.png">p11_phi1_poly.png</a>,
the data for problem p11 with a PHI1 RBF interpolant.
</li>
<li>
<a href = "p11_phi2_poly.png">p11_phi2_poly.png</a>,
the data for problem p11 with a PHI2 RBF interpolant.
</li>
<li>
<a href = "p11_phi3_poly.png">p11_phi3_poly.png</a>,
the data for problem p11 with a PHI3 RBF interpolant.
</li>
<li>
<a href = "p11_phi4_poly.png">p11_phi4_poly.png</a>,
the data for problem p11 with a PHI4 RBF interpolant.
</li>
<li>
<a href = "p12_data.png">p12_data.png</a>,
the data for problem p12 with a linear interpolant.
</li>
<li>
<a href = "p12_phi1_poly.png">p12_phi1_poly.png</a>,
the data for problem p12 with a PHI1 RBF interpolant.
</li>
<li>
<a href = "p12_phi2_poly.png">p12_phi2_poly.png</a>,
the data for problem p12 with a PHI2 RBF interpolant.
</li>
<li>
<a href = "p12_phi3_poly.png">p12_phi3_poly.png</a>,
the data for problem p12 with a PHI3 RBF interpolant.
</li>
<li>
<a href = "p12_phi4_poly.png">p12_phi4_poly.png</a>,
the data for problem p12 with a PHI4 RBF interpolant.
</li>
<li>
<a href = "p13_data.png">p13_data.png</a>,
the data for problem p13 with a linear interpolant.
</li>
<li>
<a href = "p13_phi1_poly.png">p13_phi1_poly.png</a>,
the data for problem p13 with a PHI1 RBF interpolant.
</li>
<li>
<a href = "p13_phi2_poly.png">p13_phi2_poly.png</a>,
the data for problem p13 with a PHI2 RBF interpolant.
</li>
<li>
<a href = "p13_phi3_poly.png">p13_phi3_poly.png</a>,
the data for problem p13 with a PHI3 RBF interpolant.
</li>
<li>
<a href = "p13_phi4_poly.png">p13_phi4_poly.png</a>,
the data for problem p13 with a PHI4 RBF interpolant.
</li>
</ul>
</p>
<p>
You can go up one level to <a href = "../m_src.html">
the MATLAB source codes</a>.
</p>
<hr>
<i>
Last modified on 04 August 2012.
</i>
<!-- John Burkardt -->
</body>
</html>