-
Notifications
You must be signed in to change notification settings - Fork 57
/
quadrature_test.html
1924 lines (1881 loc) · 57.8 KB
/
quadrature_test.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<html>
<head>
<title>
QUADRATURE_TEST - Quadrature Rule Applied to Test Integrals
</title>
</head>
<body bgcolor="#EEEEEE" link="#CC0000" alink="#FF3300" vlink="#000055">
<h1 align = "center">
QUADRATURE_TEST <br> Quadrature Rule Applied to Test Integrals
</h1>
<hr>
<p>
<b>QUADRATURE_TEST</b>
is a MATLAB program which
reads three files that define
a quadrature rule, applies the quadrature rule to a set of
test integrals, and reports the results.
</p>
<p>
The quadrature rule is defined by three text files:
<ol>
<li>
<i>the "X" file</i> lists the abscissas (N rows, M columns);
</li>
<li>
<i>the "W" file</i> lists the weights (N rows);
</li>
<li>
<i>the "R" file</i> lists the integration region corners
(2 rows, M columns);
</li>
</ol>
For more on quadrature rules, see the <b>QUADRATURE_RULES</b>
listing below.
</p>
<p>
The test integrals come from the <b>TEST_NINT</b> library.
</p>
<p>
The list of integrand functions includes:
<ol>
<li>
f(x) = ( sum ( x(1:m) ) )**2;
</li>
<li>
f(x) = ( sum ( 2 * x(1:m) - 1 ) )**4;
</li>
<li>
f(x) = ( sum ( x(1:m) ) )**5;
</li>
<li>
f(x) = ( sum ( 2 * x(1:m) - 1 ) )**6;
</li>
<li>
f(x) = 1 / ( 1 + sum ( 2 * x(1:m) ) );
</li>
<li>
f(x) = product ( 2 * abs ( 2 * x(1:m) - 1 ) );
</li>
<li>
f(x) = product ( pi / 2 ) * sin ( pi * x(1:m) );
</li>
<li>
f(x) = ( sin ( (pi/4) * sum ( x(1:m) ) ) )**2;
</li>
<li>
f(x) = exp ( sum ( c(1:m) * x(1:m) ) );
</li>
<li>
f(x) = sum ( abs ( x(1:m) - 0.5 ) );
</li>
<li>
f(x) = exp ( sum ( abs ( 2 * x(1:m) - 1 ) ) );
</li>
<li>
f(x) = product ( 1 <= i <= m ) ( i * cos ( i * x(i) ) );
</li>
<li>
f(x) = product ( 1 <= i <= m ) t(n(i))(x(i)), t(n(i))
is a Chebyshev polynomial;
</li>
<li>
f(x) = sum ( 1 <= i <= m ) (-1)**i * product ( 1 <= j <= i ) x(j);
</li>
<li>
f(x) = product ( 1 <= i <= order ) x(mod(i-1,m)+1);
</li>
<li>
f(x) = sum ( abs ( x(1:m) - x0(1:m) ) );
</li>
<li>
f(x) = sum ( ( x(1:m) - x0(1:m) )**2 );
</li>
<li>
f(x) = 1 inside an m-dimensional sphere around x0(1:m), 0 outside;
</li>
<li>
f(x) = product ( sqrt ( abs ( x(1:m) - x0(1:m) ) ) );
</li>
<li>
f(x) = ( sum ( x(1:m) ) )**power;
</li>
<li>
f(x) = c * product ( x(1:m)^e(1:m) ) on the surface of
an m-dimensional unit sphere;
</li>
<li>
f(x) = c * product ( x(1:m)^e(1:m) ) in an m-dimensional ball;
</li>
<li>
f(x) = c * product ( x(1:m)^e(1:m) ) in the unit m-dimensional simplex;
</li>
<li>
f(x) = product ( abs ( 4 * x(1:m) - 2 ) + c(1:m) )
/ ( 1 + c(1:m) ) );
</li>
<li>
f(x) = exp ( c * product ( x(1:m) ) );
</li>
<li>
f(x) = product ( c(1:m) * exp ( - c(1:m) * x(1:m) ) );
</li>
<li>
f(x) = cos ( 2 * pi * r + sum ( c(1:m) * x(1:m) ) ), <br>
Genz "Oscillatory";
</li>
<li>
f(x) = 1 / product ( c(1:m)**2 + (x(1:m) - x0(1:m))**2),<br>
Genz "Product Peak";
</li>
<li>
f(x) = 1 / ( 1 + sum ( c(1:m) * x(1:m) ) )**(m+r),<br>
Genz "Corner Peak";
</li>
<li>
f(x) = exp(-sum(c(1:m)**2 * ( x(1:m) - x0(1:m))**2 ) ),<br>
Genz "Gaussian";
</li>
<li>
f(x) = exp ( - sum ( c(1:m) * abs ( x(1:m) - x0(1:m) ) ) ),
Genz "Continuous";
</li>
<li>
f(x) = exp(sum(c(1:m)*x(1:m)) for x(1:m) <= x0(1:m), 0 otherwise,<br>
Genz "Discontinuous";
</li>
</ol>
</p>
<h3 align = "center">
Usage:
</h3>
<p>
<blockquote>
<b>quadrature_test</b> ( '<i>prefix</i>' )
</blockquote>
where
<dl>
<dt>
<i>prefix</i>
</dt>
<dd>
the common prefix for the files containing the abscissa (X),
weight (W) and region (R) information of the quadrature rule;
</dd>
</dl>
</p>
<p>
If the arguments are not supplied on the command line, the
program will prompt for them.
</p>
<h3 align = "center">
Licensing:
</h3>
<p>
The computer code and data files described and made available on this web page
are distributed under
<a href = "../../txt/gnu_lgpl.txt">the GNU LGPL license.</a>
</p>
<h3 align = "center">
Languages:
</h3>
<p>
<b>QUADRATURE_TEST</b> is available in
<a href = "../../cpp_src/quadrature_test/quadrature_test.html">a C++ version</a> and
<a href = "../../f_src/quadrature_test/quadrature_test.html">a FORTRAN90 version</a> and
<a href = "../../m_src/quadrature_test/quadrature_test.html">a MATLAB version</a>.
</p>
<h3 align = "center">
Related Data and Programs:
</h3>
<p>
<a href = "../../f_src/integral_test/integral_test.html">
INTEGRAL_TEST</a>,
a FORTRAN90 program which
uses test integrals to evaluate
sets of quadrature points.
</p>
<p>
<a href = "../../m_src/nint_exactness/nint_exactness.html">
NINT_EXACTNESS</a>,
a MATLAB program which
demonstrates how to measure the
polynomial exactness of a multidimensional quadrature rule.
</p>
<p>
<a href = "../../datasets/quadrature_rules/quadrature_rules.html">
QUADRATURE_RULES</a>,
a dataset directory which
contains a description and examples of quadrature rules defined
by a set of "X", "W" and "R" files.
</p>
<p>
<a href = "../../m_src/quadrature_test_2d/quadrature_test_2d.html">
QUADRATURE_TEST_2D</a>,
a MATLAB program which
reads files defining a 2D quadrature rule, and
applies them to all the test integrals defined by <b>TEST_INT_2D</b>.
</p>
<p>
<a href = "../../m_src/stroud/stroud.html">
STROUD</a>,
a MATLAB library which
contains quadrature
rules for a variety of unusual areas, surfaces and volumes in 2D,
3D and N-dimensions.
</p>
<p>
<a href = "../../m_src/test_nint/test_nint.html">
TEST_NINT</a>,
a MATLAB library which
defines a set of integrand functions to be used for testing
multidimensional quadrature rules and routines.
</p>
<p>
<a href = "../../m_src/testpack/testpack.html">
TESTPACK</a>,
a MATLAB library which
defines a set of integrands used to test multidimensional quadrature.
</p>
<h3 align = "center">
Reference:
</h3>
<p>
<ol>
<li>
JD Beasley, SG Springer,<br>
Algorithm AS 111:
The Percentage Points of the Normal Distribution,<br>
Applied Statistics,<br>
Volume 26, 1977, pages 118-121.
</li>
<li>
Paul Bratley, Bennett Fox, Harald Niederreiter,<br>
Implementation and Tests of Low-Discrepancy Sequences,<br>
ACM Transactions on Modeling and Computer Simulation,<br>
Volume 2, Number 3, July 1992, pages 195-213.
</li>
<li>
Roger Broucke,<br>
Algorithm 446:
Ten Subroutines for the Manipulation of Chebyshev Series,<br>
Communications of the ACM,<br>
Volume 16, 1973, pages 254-256.
</li>
<li>
William Cody, Kenneth Hillstrom,<br>
Chebyshev Approximations for the Natural Logarithm of the
Gamma Function,
Mathematics of Computation,<br>
Volume 21, Number 98, April 1967, pages 198-203.
</li>
<li>
Richard Crandall,<br>
Projects in Scientific Computing,<br>
Springer, 2005,<br>
ISBN: 0387950095,<br>
LC: Q183.9.C733.
</li>
<li>
Philip Davis, Philip Rabinowitz,<br>
Methods of Numerical Integration,<br>
Second Edition,<br>
Dover, 2007,<br>
ISBN: 0486453391,<br>
LC: QA299.3.D28.
</li>
<li>
Gerald Folland,<br>
How to Integrate a Polynomial Over a Sphere,<br>
American Mathematical Monthly,<br>
Volume 108, Number 5, May 2001, pages 446-448.
</li>
<li>
Leslie Fox, Ian Parker,<br>
Chebyshev Polynomials in Numerical Analysis,<br>
Oxford Press, 1968,<br>
LC: QA297.F65.
</li>
<li>
Alan Genz,<br>
Testing Multidimensional Integration Routines,<br>
in Tools, Methods, and Languages for Scientific and
Engineering Computation,<br>
edited by B Ford, JC Rault, F Thomasset,<br>
North-Holland, 1984, pages 81-94,<br>
ISBN: 0444875700,<br>
LC: Q183.9.I53.
</li>
<li>
Alan Genz,<br>
A Package for Testing Multiple Integration Subroutines,<br>
in Numerical Integration:
Recent Developments, Software and Applications,<br>
edited by Patrick Keast, Graeme Fairweather,<br>
Reidel, 1987, pages 337-340,<br>
ISBN: 9027725144,<br>
LC: QA299.3.N38.
</li>
<li>
Kenneth Hanson,<br>
Quasi-Monte Carlo: halftoning in high dimensions?<br>
in Computatinal Imaging,<br>
Edited by CA Bouman, RL Stevenson,<br>
Proceedings SPIE,<br>
Volume 5016, 2003, pages 161-172.
</li>
<li>
John Hart, Ward Cheney, Charles Lawson, Hans Maehly,
Charles Mesztenyi, John Rice, Henry Thatcher,
Christoph Witzgall,<br>
Computer Approximations,<br>
Wiley, 1968,<br>
LC: QA297.C64.
</li>
<li>
Stephen Joe, Frances Kuo<br>
Remark on Algorithm 659:
Implementing Sobol's Quasirandom Sequence Generator,<br>
ACM Transactions on Mathematical Software,<br>
Volume 29, Number 1, March 2003, pages 49-57.
</li>
<li>
David Kahaner, Cleve Moler, Steven Nash,<br>
Numerical Methods and Software,<br>
Prentice Hall, 1989,<br>
ISBN: 0-13-627258-4,<br>
LC: TA345.K34.
</li>
<li>
Bradley Keister,<br>
Multidimensional Quadrature Algorithms,<br>
Computers in Physics,<br>
Volume 10, Number 2, March/April, 1996, pages 119-122.
</li>
<li>
Arnold Krommer, Christoph Ueberhuber,<br>
Numerical Integration on Advanced Compuer Systems,<br>
Springer, 1994,<br>
ISBN: 3540584102,<br>
LC: QA299.3.K76.
</li>
<li>
Anargyros Papageorgiou, Joseph Traub,<br>
Faster Evaluation of Multidimensional Integrals,<br>
Computers in Physics,<br>
Volume 11, Number 6, November/December 1997, pages 574-578.
</li>
<li>
Thomas Patterson,<br>
On the Construction of a Practical Ermakov-Zolotukhin
Multiple Integrator,<br>
in Numerical Integration:
Recent Developments, Software and Applications,<br>
edited by Patrick Keast and Graeme Fairweather,<br>
D. Reidel, 1987, pages 269-290.
</li>
<li>
Arthur Stroud,<br>
Approximate Calculation of Multiple Integrals,<br>
Prentice Hall, 1971,<br>
ISBN: 0130438936,<br>
LC: QA311.S85.
</li>
<li>
Arthur Stroud, Don Secrest,<br>
Gaussian Quadrature Formulas,<br>
Prentice Hall, 1966,<br>
LC: QA299.4G3S7.
</li>
<li>
Xiaoqun Wang, Kai-Tai Fang,<br>
The Effective Dimension and quasi-Monte Carlo Integration,<br>
Journal of Complexity,<br>
Volume 19, pages 101-124, 2003.
</li>
</ol>
</p>
<h3 align = "center">
Source Code:
</h3>
<p>
<ul>
<li>
<a href = "quadrature_test.m">quadrature_test.m</a>,
the main program, which gets the user's input, reads
the quadrature rule from the files, and applies it
to the test integrand functions.
</li>
</ul>
</p>
<p>
<ul>
<li>
<a href = "csevl.m">csevl.m</a>,
evaluates an N-term Chebyshev series.
</li>
<li>
<a href = "error_f.m">error_f.m</a>,
evaluates the Error function.
</li>
<li>
<a href = "error_fc.m">error_fc.m</a>,
evaluates the complementary Error function.
</li>
<li>
<a href = "file_column_count.m">file_column_count.m</a>,
counts the columns in a file
</li>
<li>
<a href = "file_row_count.m">file_row_count.m</a>,
counts the rows in a file
</li>
<li>
<a href = "get_problem_num.m">get_problem_num.m</a>,
returns the number of test integration problems.
</li>
<li>
<a href = "inits.m">inits.m</a>,
estimates the order of an orthogonal series for a given accuracy.
</li>
<li>
<a href = "normal_01_cdf_inv.m">normal_01_cdf_inv.m</a>,
inverts the Normal 01 CDF.
</li>
<li>
<a href = "p00_box_gl05.m">p00_box_gl05.m</a>,
uses Gauss-Legendre quadrature in an N-dimensional box.
</li>
<li>
<a href = "p00_box_mc.m">p00_box_mc.m</a>,
integrates over an multi-dimensional box using Monte Carlo.
</li>
<li>
<a href = "p00_default.m">p00_default.m</a>,
sets a problem to a default state.
</li>
<li>
<a href = "p00_exact.m">p00_exact.m</a>,
returns the exact integral for any problem.
</li>
<li>
<a href = "p00_f.m">p00_f.m</a>,
evaluates the integrand for any problem.
</li>
<li>
<a href = "p00i4.m">p00_i4.m</a>,
sets or gets integer scalar parameters for any problem.
</li>
<li>
<a href = "p00_lim.m">p00_lim.m</a>,
returns the integration limits for any problem.
</li>
<li>
<a href = "p00_name.m">p00_name.m</a>,
returns the name of any problem.
</li>
<li>
<a href = "p00_r8vec.m">p00_r8vec.m</a>,
sets or gets real vector parameters for any problem.
</li>
<li>
<a href = "p00_region.m">p00_region.m</a>,
returns the name of the integration region for any problem.
</li>
<li>
<a href = "p00_remap01.m">p00_remap01.m</a>,
remaps points in [0,1]^DIM_NUM into [A(1:DIM_NUM),B(1:DIM_NUM)].
</li>
<li>
<a href = "p00_title.m">p00_title.m</a>,
prints a title for any problem.
</li>
<li>
<a href = "p00_volume.m">p00_volume.m</a>,
returns the volume of the integration region.
</li>
<li>
<a href = "p01_default.m">p01_default.m</a>,
sets default values for problem 01.
</li>
<li>
<a href = "p01_exact.m">p01_exact.m</a>,
sets the exact integral for problem 01.
</li>
<li>
<a href = "p01_f.m">p01_f.m</a>,
evaluates the integrand for problem 01.
</li>
<li>
<a href = "p01_i4.m">p01_i4.m</a>,
sets or gets I4 parameters for problem 01.
</li>
<li>
<a href = "p01_lim.m">p01_lim.m</a>,
returns the integration limits for problem 01.
</li>
<li>
<a href = "p01_name.m">p01_name.m</a>,
returns a name for problem 01.
</li>
<li>
<a href = "p01_region.m">p01_region.m</a>,
returns the region type for problem 01.
</li>
<li>
<a href = "p01_title.m">p01_title.m</a>,
prints a title for problem 01.
</li>
<li>
<a href = "p02_default.m">p02_default.m</a>,
sets default values for problem 02.
</li>
<li>
<a href = "p02_exact.m">p02_exact.m</a>,
sets the exact integral for problem 02.
</li>
<li>
<a href = "p02_f.m">p02_f.m</a>,
evaluates the integrand for problem 02.
</li>
<li>
<a href = "p02_i4.m">p02_i4.m</a>,
sets or gets I4 parameters for problem 02.
</li>
<li>
<a href = "p02_lim.m">p02_lim.m</a>,
returns the integration limits for problem 02.
</li>
<li>
<a href = "p02_name.m">p02_name.m</a>,
returns a name for problem 02.
</li>
<li>
<a href = "p02_region.m">p02_region.m</a>,
returns the region type for problem 02.
</li>
<li>
<a href = "p02_title.m">p02_title.m</a>,
prints a title for problem 02.
</li>
<li>
<a href = "p03_default.m">p03_default.m</a>,
sets default values for problem 03.
</li>
<li>
<a href = "p03_exact.m">p03_exact.m</a>,
sets the exact integral for problem 03.
</li>
<li>
<a href = "p03_f.m">p03_f.m</a>,
evaluates the integrand for problem 03.
</li>
<li>
<a href = "p03_i4.m">p03_i4.m</a>,
sets or gets I4 parameters for problem 03.
</li>
<li>
<a href = "p03_lim.m">p03_lim.m</a>,
returns the integration limits for problem 03.
</li>
<li>
<a href = "p03_name.m">p03_name.m</a>,
returns a name for problem 03.
</li>
<li>
<a href = "p03_region.m">p03_region.m</a>,
returns the region type for problem 03.
</li>
<li>
<a href = "p03_title.m">p03_title.m</a>,
prints a title for problem 03.
</li>
<li>
<a href = "p04_default.m">p04_default.m</a>,
sets default values for problem 04.
</li>
<li>
<a href = "p04_exact.m">p04_exact.m</a>,
sets the exact integral for problem 04.
</li>
<li>
<a href = "p04_f.m">p04_f.m</a>,
evaluates the integrand for problem 04.
</li>
<li>
<a href = "p04_i4.m">p04_i4.m</a>,
sets or gets I4 parameters for problem 04.
</li>
<li>
<a href = "p04_lim.m">p04_lim.m</a>,
returns the integration limits for problem 04.
</li>
<li>
<a href = "p04_name.m">p04_name.m</a>,
returns a name for problem 04.
</li>
<li>
<a href = "p04_region.m">p04_region.m</a>,
returns the region type for problem 04.
</li>
<li>
<a href = "p04_title.m">p04_title.m</a>,
prints a title for problem 04.
</li>
<li>
<a href = "p05_default.m">p05_default.m</a>,
sets default values for problem 05.
</li>
<li>
<a href = "p05_exact.m">p05_exact.m</a>,
sets the exact integral for problem 05.
</li>
<li>
<a href = "p05_f.m">p05_f.m</a>,
evaluates the integrand for problem 05.
</li>
<li>
<a href = "p05_i4.m">p05_i4.m</a>,
sets or gets I4 parameters for problem 05
</li>
<li>
<a href = "p05_lim.m">p05_lim.m</a>,
returns the integration limits for problem 05.
</li>
<li>
<a href = "p05_name.m">p05_name.m</a>,
returns a name for problem 05.
</li>
<li>
<a href = "p05_region.m">p05_region.m</a>,
returns the region type for problem 05.
</li>
<li>
<a href = "p05_title.m">p05_title.m</a>,
prints a title for problem 05.
</li>
<li>
<a href = "p06_default.m">p06_default.m</a>,
sets default values for problem 06.
</li>
<li>
<a href = "p06_exact.m">p06_exact.m</a>,
sets the exact integral for problem 06.
</li>
<li>
<a href = "p06_f.m">p06_f.m</a>,
evaluates the integrand for problem 06.
</li>
<li>
<a href = "p06_i4.m">p06_i4.m</a>,
sets or gets I4 parameters for problem 06.
</li>
<li>
<a href = "p06_lim.m">p06_lim.m</a>,
returns the integration limits for problem 06.
</li>
<li>
<a href = "p06_name.m">p06_name.m</a>,
returns a name for problem 06.
</li>
<li>
<a href = "p06_region.m">p06_region.m</a>,
returns the region type for problem 06.
</li>
<li>
<a href = "p06_title.m">p06_title.m</a>,
prints a title for problem 06.
</li>
<li>
<a href = "p07_default.m">p07_default.m</a>,
sets default values for problem 07.
</li>
<li>
<a href = "p07_exact.m">p07_exact.m</a>,
sets the exact integral for problem 07.
</li>
<li>
<a href = "p07_f.m">p07_f.m</a>,
evaluates the integrand for problem 07.
</li>
<li>
<a href = "p07_i4.m">p07_i4.m</a>,
sets or gets I4 parameters for problem 07.
</li>
<li>
<a href = "p07_lim.m">p07_lim.m</a>,
returns the integration limits for problem 07.
</li>
<li>
<a href = "p07_name.m">p07_name.m</a>,
returns a name for problem 07.
</li>
<li>
<a href = "p07_region.m">p07_region.m</a>,
returns the region type for problem 07.
</li>
<li>
<a href = "p07_title.m">p07_title.m</a>,
prints a title for problem 07.
</li>
<li>
<a href = "p08_default.m">p08_default.m</a>,
sets default values for problem 08.
</li>
<li>
<a href = "p08_exact.m">p08_exact.m</a>,
sets the exact integral for problem 08.
</li>
<li>
<a href = "p08_f.m">p08_f.m</a>,
evaluates the integrand for problem 08.
</li>
<li>
<a href = "p08_i4.m">p08_i4.m</a>,
sets or gets I4 parameters for problem 08.
</li>
<li>
<a href = "p08_lim.m">p08_lim.m</a>,
returns the integration limits for problem 08.
</li>
<li>
<a href = "p08_name.m">p08_name.m</a>,
returns a name for problem 08.
</li>
<li>
<a href = "p08_region.m">p08_region.m</a>,
returns the region type for problem 08.
</li>
<li>
<a href = "p08_title.m">p08_title.m</a>,
prints a title for problem 08.
</li>
<li>
<a href = "p09_default.m">p09_default.m</a>,
sets default values for problem 09.
</li>
<li>
<a href = "p09_exact.m">p09_exact.m</a>,
sets the exact integral for problem 09.
</li>
<li>
<a href = "p09_f.m">p09_f.m</a>,
evaluates the integrand for problem 09.
</li>
<li>
<a href = "p09_i4.m">p09_i4.m</a>,
sets or gets I4 parameters for problem 09.
</li>
<li>
<a href = "p09_lim.m">p09_lim.m</a>,
returns the integration limits for problem 09.
</li>
<li>
<a href = "p09_name.m">p09_name.m</a>,
returns a name for problem 09.
</li>
<li>
<a href = "p09_r8vec.m">p09_r8vec.m</a>,
sets or gets R8VEC parameters for problem 09.
</li>
<li>
<a href = "p09_region.m">p09_region.m</a>,
returns the region type for problem 09.
</li>
<li>
<a href = "p09_title.m">p09_title.m</a>,
prints a title for problem 09.
</li>
<li>
<a href = "p10_default.m">p10_default.m</a>,
sets default values for problem 10.
</li>
<li>
<a href = "p10_exact.m">p10_exact.m</a>,
sets the exact integral for problem 10.
</li>
<li>
<a href = "p10_f.m">p10_f.m</a>,
evaluates the integrand for problem 10.
</li>
<li>
<a href = "p10_i4.m">p10_i4.m</a>,
sets or gets I4 parameters for problem 10.
</li>
<li>
<a href = "p10_lim.m">p10_lim.m</a>,
returns the integration limits for problem 10.
</li>
<li>
<a href = "p10_name.m">p10_name.m</a>,
returns a name for problem 10.
</li>
<li>
<a href = "p10_region.m">p10_region.m</a>,
returns the region type for problem 10.
</li>
<li>
<a href = "p10_title.m">p10_title.m</a>,
prints a title for problem 10.
</li>
<li>
<a href = "p11_default.m">p11_default.m</a>,
sets default values for problem 11.
</li>
<li>
<a href = "p11_exact.m">p11_exact.m</a>,
sets the exact integral for problem 11.
</li>
<li>
<a href = "p11_f.m">p11_f.m</a>,
evaluates the integrand for problem 11.
</li>
<li>
<a href = "p11_i4.m">p11_i4.m</a>,
sets or gets I4 parameters for problem 11.
</li>
<li>
<a href = "p11_lim.m">p11_lim.m</a>,
returns the integration limits for problem 11.
</li>
<li>
<a href = "p11_name.m">p11_name.m</a>,
returns a name for problem 11.
</li>
<li>
<a href = "p11_region.m">p11_region.m</a>,
returns the region type for problem 11.
</li>
<li>
<a href = "p11_title.m">p11_title.m</a>,
prints a title for problem 11.
</li>
<li>
<a href = "p12_default.m">p12_default.m</a>,
sets default values for problem 12.
</li>
<li>
<a href = "p12_exact.m">p12_exact.m</a>,
sets the exact integral for problem 12.
</li>
<li>
<a href = "p12_f.m">p12_f.m</a>,
evaluates the integrand for problem 12.
</li>
<li>
<a href = "p12_i4.m">p12_i4.m</a>,
sets or gets I4 parameters for problem 12.
</li>
<li>
<a href = "p12_lim.m">p12_lim.m</a>,
returns the integration limits for problem 12.
</li>
<li>
<a href = "p12_name.m">p12_name.m</a>,
returns a name for problem 12.
</li>
<li>
<li>
<a href = "p12_region.m">p12_region.m</a>,
returns the region type for problem 12.
</li>
<li>
<a href = "p12_title.m">p12_title.m</a>,
prints a title for problem 12.
</li>
<li>
<a href = "p13_default.m">p13_default.m</a>,
sets default values for problem 13.
</li>
<li>
<a href = "p13_exact.m">p13_exact.m</a>,
sets the exact integral for problem 13.
</li>
<li>
<a href = "p13_f.m">p13_f.m</a>,
evaluates the integrand for problem 13.
</li>
<li>
<a href = "p13_i4.m">p13_i4.m</a>,
sets or gets I4 parameters for problem 13.
</li>
<li>
<a href = "p13_lim.m">p13_lim.m</a>,
returns the integration limits for problem 13.
</li>
<li>
<a href = "p13_name.m">p13_name.m</a>,
returns a name for problem 13.
</li>
<li>
<a href = "p13_region.m">p13_region.m</a>,
returns the region type for problem 13.
</li>
<li>
<a href = "p13_title.m">p13_title.m</a>,
prints a title for problem 13.
</li>
<li>
<a href = "p14_default.m">p14_default.m</a>,
sets default values for problem 14.
</li>
<li>
<a href = "p14_exact.m">p14_exact.m</a>,
sets the exact integral for problem 14.
</li>
<li>
<a href = "p14_f.m">p14_f.m</a>,
evaluates the integrand for problem 14.
</li>
<li>
<a href = "p14_i4.m">p14_i4.m</a>,
sets or gets I4 parameters for problem 14.
</li>
<li>
<a href = "p14_lim.m">p14_lim.m</a>,
returns the integration limits for problem 14.
</li>
<li>
<a href = "p14_name.m">p14_name.m</a>,
returns a name for problem 14.
</li>
<li>
<a href = "p14_region.m">p14_region.m</a>,
returns the region type for problem 14.
</li>
<li>
<a href = "p14_title.m">p14_title.m</a>,
prints a title for problem 14.
</li>
<li>
<a href = "p15_default.m">p15_default.m</a>,
sets default values for problem 15.
</li>
<li>
<a href = "p15_exact.m">p15_exact.m</a>,
sets the exact integral for problem 15.
</li>
<li>
<a href = "p15_f.m">p15_f.m</a>,
evaluates the integrand for problem 15.
</li>
<li>
<a href = "p15_i4.m">p15_i4.m</a>,
sets or gets I4 parameters for problem 15.
</li>
<li>
<a href = "p15_lim.m">p15_lim.m</a>,
returns the integration limits for problem 151.
</li>
<li>
<a href = "p15_name.m">p15_name.m</a>,
returns a name for problem 15.