-
Notifications
You must be signed in to change notification settings - Fork 57
/
product_rule.html
385 lines (337 loc) · 9.9 KB
/
product_rule.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
<html>
<head>
<title>
PRODUCT_RULE - Multidimensional Quadrature Rule Creation
</title>
</head>
<body bgcolor="#EEEEEE" link="#CC0000" alink="#FF3300" vlink="#000055">
<h1 align = "center">
PRODUCT_RULE <br> Multidimensional Quadrature Rule Creation
</h1>
<hr>
<p>
<b>PRODUCT_RULE</b>
is a MATLAB program which
creates a multidimensional quadrature rule by using
a product of <i>distinct</i> one-dimensional quadrature rules.
</p>
<p>
The program reads a single input file, which contains a list
that defines the 1D rules to be used as factors.
</p>
<p>
Each 1D rule is stored in three files, an "X", "W", and "R" file,
which are assumed to share a common filename prefix, so that
the files defined by a given <i>prefix</i> have the form:
<ul>
<li>
<i>prefix</i>_<b>x.txt</b>
</li>
<li>
<i>prefix</i>_<b>w.txt</b>
</li>
<li>
<i>prefix</i>_<b>r.txt</b>
</li>
</ul>
</p>
<p>
For instance, let us suppose we want to compute a 2D product rule
formed from a 3 point Clenshaw Curtis rule and a 2 point
Gauss-Legendre rule. If the prefixes for these files were
"cc_d1_o003" and "gl_d1_o002" respectively, then the input
file to the program would read as follows:
<pre>
cc_d1_o003
gl_d1_o002
</pre>
When the program read the first 1D rule, it would be searching for
three files:
<ul>
<li>
<b>cc_d1_o003_x.txt</b>
</li>
<li>
<b>cc_d1_o003_w.txt</b>
</li>
<li>
<b>cc_d1_o003_r.txt</b>
</li>
</ul>
and similarly for the second file.
</p>
<p>
Once the program has computed the multidimensional product rule,
it again writes out three files describing the product rule,
with a common filename prefix specified by the user, which
might be, for instance, <i>product</i>, in which case the files
would be:
<ul>
<li>
<b>product_x.txt</b>
</li>
<li>
<b>product_w.txt</b>
</li>
<li>
<b>product_r.txt</b>
</li>
</ul>
</p>
<p>
For information on the form of these files, see the
<b>QUADRATURE_RULES</b> directory listed below.
</p>
<h3 align = "center">
Usage:
</h3>
<p>
<blockquote>
<b>product_rule</b> ( <i>list_file</i>, <i>product_prefix</i> )
</blockquote>
where
<ul>
<li>
<i>list_file</i> is the name of the file containing the list of filename
prefixes that can be used to locate the X, W and R files
of each 1D quadrature rule.
</li>
<li>
<i>product_prefix</i> is the prefix to be used when writing out the X, W and R
files of the computed multidimensional product rule.
</li>
</ul>
</p>
<p>
If the arguments are not supplied on the command line, the
program will prompt for them.
</p>
<h3 align = "center">
Licensing:
</h3>
<p>
The computer code and data files described and made available on this web page
are distributed under
<a href = "../../txt/gnu_lgpl.txt">the GNU LGPL license.</a>
</p>
<h3 align = "center">
Languages:
</h3>
<p>
<b>PRODUCT_RULE</b> is available in
<a href = "../../c_src/product_rule/product_rule.html">a C version</a> and
<a href = "../../cpp_src/product_rule/product_rule.html">a C++ version</a> and
<a href = "../../f77_src/product_rule/product_rule.html">a FORTRAN77 version</a> and
<a href = "../../f_src/product_rule/product_rule.html">a FORTRAN90 version</a> and
<a href = "../../m_src/product_rule/product_rule.html">a MATLAB version</a>
</p>
<h3 align = "center">
Related Data and Programs:
</h3>
<p>
<a href = "../../f_src/integral_test/integral_test.html">
INTEGRAL_TEST</a>,
a FORTRAN90 program which
uses some of these test integrals to evaluate sets of quadrature points.
</p>
<p>
<a href = "../../m_src/nint_exactness/nint_exactness.html">
NINT_EXACTNESS</a>,
a MATLAB program which
can test a quadrature rule for polynomial exactness.
</p>
<p>
<a href = "../../m_src/nint_exactness_mixed/nint_exactness_mixed.html">
NINT_EXACTNESS_MIXED</a>,
a MATLAB program which
measures the polynomial exactness of a multidimensional quadrature rule
based on a mixture of 1D quadrature rule factors.
</p>
<p>
<a href = "../../m_src/nintlib/nintlib.html">
NINTLIB</a>,
a MATLAB library which
numerically estimates integrals in multiple dimensions.
</p>
<p>
<a href = "../../m_src/power_rule/power_rule.html">
POWER_RULE</a>,
a MATLAB program which
constructs a power rule, that is, a product quadrature rule
from <i>identical</i> 1D factor rules.
</p>
<p>
<a href = "../../datasets/quadrature_rules/quadrature_rules.html">
QUADRATURE_RULES</a>,
a dataset directory which
contains sets of files that define quadrature
rules over various 1D intervals or multidimensional hypercubes.
</p>
<p>
<a href = "../../m_src/quadrature_test/quadrature_test.html">
QUADRATURE_TEST</a>,
a MATLAB program which
reads the definition of a
multidimensional quadrature rule from three files, applies
the rule to a number of test integrals, and prints the
results.
</p>
<p>
<a href = "../../m_src/quadrule/quadrule.html">
QUADRULE</a>,
a MATLAB library which
defines quadrature rules on a
variety of intervals with different weight functions.
</p>
<p>
<a href = "../../m_src/sparse_grid_mixed/sparse_grid_mixed.html">
SPARSE_GRID_MIXED</a>,
a MATLAB library which
creates a sparse grid dataset based on a mixed set of 1D factor rules.
</p>
<p>
<a href = "../../m_src/stroud/stroud.html">
STROUD</a>,
a MATLAB library which
contains quadrature
rules for a variety of unusual areas, surfaces and volumes in 2D,
3D and N-dimensions.
</p>
<p>
<a href = "../../m_src/test_nint/test_nint.html">
TEST_NINT</a>,
a MATLAB library which
defines integrand functions for testing
multidimensional quadrature routines.
</p>
<p>
<a href = "../../m_src/testpack/testpack.html">
TESTPACK</a>,
a MATLAB library which
defines a set of integrands used to test multidimensional quadrature.
</p>
<p>
<a href = "../../m_src/truncated_normal_rule/truncated_normal_rule.html">
TRUNCATED_NORMAL_RULE</a>,
a MATLAB program which
computes a quadrature rule for a normal probability density function (PDF),
also called a Gaussian distribution, that has been
truncated to [A,+oo), (-oo,B] or [A,B].
</p>
<h3 align = "center">
Reference:
</h3>
<p>
<ol>
<li>
Philip Davis, Philip Rabinowitz,<br>
Methods of Numerical Integration,<br>
Second Edition,<br>
Dover, 2007,<br>
ISBN: 0486453391,<br>
LC: QA299.3.D28.
</li>
</ol>
</p>
<h3 align = "center">
Source Code:
</h3>
<p>
<ul>
<li>
<a href = "product_rule.m">product_rule.m</a>,
the source code.
</li>
</ul>
</p>
<h3 align = "center">
Examples and Tests:
</h3>
<p>
As an example, we make a 2D product rule.
</p>
<p>
The first factor is a 1D Clenshaw Curtis rule of order 3:
<ul>
<li>
<a href = "cc_d1_o3_x.txt">
cc_d1_o3_x.txt</a>,
the abscissas of a 1D Clenshaw Curtis rule of order 3.
</li>
<li>
<a href = "cc_d1_o3_w.txt">
cc_d1_o3_w.txt</a>,
the weights of a 1D Clenshaw Curtis rule of order 3.
</li>
<li>
<a href = "cc_d1_o3_r.txt">
cc_d1_o3_r.txt</a>,
defines the range of the region.
</li>
</ul>
</p>
<p>
The second factor is a 1D Gauss Legendre rule of order 2:
<ul>
<li>
<a href = "gl_d1_o2_x.txt">
gl_d1_o2_x.txt</a>,
the abscissas of a 1D Clenshaw Curtis rule of order 2.
</li>
<li>
<a href = "gl_d1_o2_w.txt">
gl_d1_o2_w.txt</a>,
the weights of a 1D Clenshaw Curtis rule of order 2.
</li>
<li>
<a href = "gl_d1_o2_r.txt">
gl_d1_o2_r.txt</a>,
defines the range of the region.
</li>
</ul>
</p>
<p>
We give the command
<blockquote>
<b>product_rule</b> factors.txt
</blockquote>
<ul>
<li>
<a href = "factors.txt">
factors.txt</a>,
a file containing the list of factors.
</li>
</ul>
</p>
<p>
The resulting product rule files:
<ul>
<li>
<a href = "ccgl_d2_o3x2_x.txt">
ccgl_d2_o3x2_x.txt</a>,
the abscissas of a 2D Clenshaw Curtis product rule of order 6.
</li>
<li>
<a href = "ccgl_d2_o3x2_w.txt">
ccgl_d2_o3x2_w.txt</a>,
the weights of a 2D Clenshaw Curtis product rule of order 6.
</li>
<li>
<a href = "ccgl_d2_o3x2_r.txt">
ccgl_d2_o3x2_r.txt</a>,
defines the range of the product region.
</li>
</ul>
</p>
<p>
You can go up one level to <a href = "../m_src.html">
the MATLAB source codes</a>.
</p>
<hr>
<i>
Last revised on 29 June 2009.
</i>
<!-- John Burkardt -->
</body>
<!-- Initial HTML skeleton created by HTMLINDEX. -->
</html>