-
Notifications
You must be signed in to change notification settings - Fork 57
/
prime_serial.html
321 lines (280 loc) · 9.21 KB
/
prime_serial.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
<html>
<head>
<title>
PRIME_SERIAL - Program to Count Primes
</title>
</head>
<body bgcolor="#EEEEEE" link="#CC0000" alink="#FF3300" vlink="#000055">
<h1 align = "center">
PRIME_SERIAL <br> Program to Count Primes
</h1>
<hr>
<p>
<b>PRIME_SERIAL</b>
is a MATLAB program which
counts the number of primes between 1 and N,
and is intended as a starting point for a parallel version.
</p>
<p>
The algorithm is completely naive. For each integer I, it simply checks
whether any smaller J evenly divides it. The total amount of work
for a given N is thus roughly proportional to 1/2*N^2.
</p>
<p>
Here are the counts of the number of primes for some selected values of N:
<table border="1" align="center">
<tr>
<th>N</th><th>Number of Primes</th>
</tr>
<tr>
<td>1</td><td>0</td>
</tr>
<tr>
<td>10</td><td>4</td>
</tr>
<tr>
<td>100</td><td>25</td>
</tr>
<tr>
<td>1,000</td><td>168</td>
</tr>
<tr>
<td>10,000</td><td>1,229</td>
</tr>
<tr>
<td>100,000</td><td>9,592</td>
</tr>
<tr>
<td>1,000,000</td><td>78,498</td>
</tr>
<tr>
<td>10,000,000</td><td>664,579</td>
</tr>
<tr>
<td>100,000,000</td><td>5,761,455</td>
</tr>
<tr>
<td>1,000,000,000</td><td>50,847,534</td>
</tr>
</table>
</p>
<p>
The following results were observed for the elapsed time, running on a
Macintosh PowerPC G5:
<table border="1" align="center">
<tr>
<th>N</th><th>Pi</th><th>Time</th>
</tr>
<tr><td> 1</td><td> 0</td><td> 0.000030</td></tr>
<tr><td> 2</td><td> 1</td><td> 0.000016</td></tr>
<tr><td> 4</td><td> 2</td><td> 0.000016</td></tr>
<tr><td> 8</td><td> 4</td><td> 0.000017</td></tr>
<tr><td> 16</td><td> 6</td><td> 0.000020</td></tr>
<tr><td> 32</td><td> 11</td><td> 0.000030</td></tr>
<tr><td> 64</td><td> 18</td><td> 0.000057</td></tr>
<tr><td> 128</td><td> 31</td><td> 0.000147</td></tr>
<tr><td> 256</td><td> 54</td><td> 0.000452</td></tr>
<tr><td> 512</td><td> 97</td><td> 0.001548</td></tr>
<tr><td> 1,024</td><td> 172</td><td> 0.005303</td></tr>
<tr><td> 2,048</td><td> 309</td><td> 0.018660</td></tr>
<tr><td> 4,096</td><td> 564</td><td> 0.068059</td></tr>
<tr><td> 8,192</td><td> 1,028</td><td> 0.246378</td></tr>
<tr><td> 16,384</td><td> 1,900</td><td> 0.914953</td></tr>
<tr><td> 32,768</td><td> 3,512</td><td> 3.380086</td></tr>
<tr><td> 65,536</td><td> 6,542</td><td> 12.619071</td></tr>
<tr><td> 131,072</td><td> 12,251</td><td> 47.412759</td></tr>
</table>
</p>
<p>
<table border="1" align="center">
<tr>
<th>N</th><th>Pi</th><th>Time</th>
</tr>
<tr><td> 5</td><td> 3</td><td> 0.000095</td></tr>
<tr><td> 50</td><td> 15</td><td> 0.000123</td></tr>
<tr><td> 500</td><td> 95</td><td> 0.003194</td></tr>
<tr><td> 5000</td><td> 669</td><td> 0.170837</td></tr>
<tr><td> 50,000</td><td> 5,133</td><td> 13.081281</td></tr>
<tr><td> 500,000</td><td> 41,538</td><td> 1,076.868061</td></tr>
</table>
</p>
<h3 align = "center">
Usage:
</h3>
<p>
<blockquote>
<i>total</i> = <b>prime</b> ( <i>n</i> )
</blockquote>
where
<ul>
<li>
<i>n</i> is the maximum number to check.
</li>
<li>
<i>total</i> is the number of primes found between 2 and <i>n</i>.
</li>
</ul>
</p>
<h3 align = "center">
Licensing:
</h3>
<p>
The computer code and data files described and made available on this web page
are distributed under
<a href = "../../txt/gnu_lgpl.txt">the GNU LGPL license.</a>
</p>
<h3 align = "center">
Languages:
</h3>
<p>
<b>PRIME_SERIAL</b> is available in
<a href = "../../c_src/prime_serial/prime_serial.html">a C version</a> and
<a href = "../../cpp_src/prime_serial/prime_serial.html">a C++ version</a> and
<a href = "../../f77_src/prime_serial/prime_serial.html">a FORTRAN77 version</a> and
<a href = "../../f_src/prime_serial/prime_serial.html">a FORTRAN90 version</a> and
<a href = "../../m_src/prime_serial/prime_serial.html">a MATLAB version</a>.
</p>
<h3 align = "center">
Related Data and Programs:
</h3>
<p>
<a href = "../../m_src/collatz/collatz.html">
COLLATZ</a>,
a MATLAB library which
computes and analyzes the Collatz
sequence (or "hailstone" sequence or "3n+1 sequence");
</p>
<p>
<a href = "../../m_src/fft_serial/fft_serial.html">
FFT_SERIAL</a>,
a MATLAB program which
demonstrates the computation of a Fast Fourier Transform,
and is intended as a starting point for implementing a parallel version.
</p>
<p>
<a href = "../../m_src/fire_serial/fire_serial.html">
FIRE_SERIAL</a>,
a MATLAB program which
simulates a forest fire over a rectangular array of trees,
starting at a single random location. It is intended as a starting
point for the development of a parallel version.
</p>
<p>
<a href = "../../m_src/md/md.html">
MD</a>,
a MATLAB program which
carries out a molecular dynamics simulation, and is intended as
a starting point for implementing a parallel version.
</p>
<p>
<a href = "../../m_src/mxm/mxm.html">
MXM</a>,
a MATLAB program which
sets up a matrix multiplication problem A=B*C,
intended as a starting point for implementing a parallel version.
</p>
<p>
<a href = "../../m_src/poisson_serial/poisson_serial.html">
POISSON_SERIAL</a>,
a MATLAB program which
computes an approximate solution to the Poisson equation in a rectangle,
and is intended as the starting point for the creation of a parallel version.
</p>
<p>
<a href = "../../m_src/prime_parfor/prime_parfor.html">
PRIME_PARFOR</a>,
a MATLAB program which
counts the number of primes between 1 and N; it runs in parallel
using MATLAB's "parfor" facility.
</p>
<p>
<a href = "../../m_src/prime_plot/prime_plot.html">
PRIME_PLOT</a>
a MATLAB program which
displays a box plot of the prime and composite numbers.
</p>
<p>
<a href = "../../m_src/prime_spmd/prime_spmd.html">
PRIME_SPMD</a>,
a MATLAB program which
counts the number of primes between 1 and N;
running in parallel using MATLAB's "SPMD" feature.
</p>
<p>
<a href = "../../m_src/quad_serial/quad_serial.html">
QUAD_SERIAL</a>,
a MATLAB program which
approximates an integral using a quadrature rule,
and is intended as a starting point for parallelization exercises.
</p>
<p>
<a href = "../../m_src/quad2d_serial/quad2d_serial.html">
QUAD2D_SERIAL</a>,
a MATLAB program which
approximates an integral over a 2D region using a product quadrature rule,
and is intended as a starting point for parallelization exercises.
</p>
<p>
<a href = "../../m_src/satisfy/satisfy.html">
SATISFY</a>,
a MATLAB program which
demonstrates, for a particular circuit, an exhaustive search
for solutions of the circuit satisfiability problem.
</p>
<p>
<a href = "../../m_src/search_serial/search_serial.html">
SEARCH_SERIAL</a>,
a MATLAB program which
searches the integers from A to B for a value J such that F(J) = C.
this version of the program is intended as a starting point for
a parallel approach.
</p>
<p>
<a href = "../../m_src/timer/timer.html">
TIMER</a>,
MATLAB programs which
demonstrate how to compute CPU time or elapsed time.
</p>
<h3 align = "center">
Reference:
</h3>
<p>
<ol>
<li>
Eratosthenes,<br>
A Method For Finding Prime Numbers,<br>
Papyrus 487, <br>
Library of Alexandria.
</li>
</ol>
</p>
<h3 align = "center">
Source Code:
</h3>
<p>
<ul>
<li>
<a href = "prime_number.m">prime_number.m</a>,
counts the primes in a given range.
</li>
<li>
<a href = "prime.m">prime.m</a>,
a function which calls PRIME_NUMBER for various ranges.
</li>
<li>
<a href = "prime_output.txt">prime_output.txt</a>,
the output file.
</li>
</ul>
</p>
<p>
You can go up one level to <a href = "../m_src.html">
the MATLAB source codes</a>.
</p>
<hr>
<i>
Last revised on 09 November 2011.
</i>
<!-- John Burkardt -->
</body>
</html>