-
Notifications
You must be signed in to change notification settings - Fork 57
/
image_diffuse.html
229 lines (195 loc) · 5.96 KB
/
image_diffuse.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
<html>
<head>
<title>
IMAGE_DIFFUSE - Black/White Version of Grayscale Image
</title>
</head>
<body bgcolor="#EEEEEE" link="#CC0000" alink="#FF3300" vlink="#000055">
<h1 align = "center">
IMAGE_DIFFUSE <br> Black/White Version of Grayscale Image
</h1>
<hr>
<p>
<b>IMAGE_DIFFUSE</b>
is a MATLAB function which
uses diffusion to smooth the colors in a picture.
</p>
<h3 align = "center">
Usage:
</h3>
<p>
<blockquote>
function <i>g2</i> = <b>image_diffuse</b> ( <i>g</i>, <i>c</i>, <i>k</i> )
</blockquote>
where
<ul>
<li>
<i>g</i> is an <i>m</i> by <i>n</i> <b>uint8</b>
(short integers, 0 to 255) array containing the grayscale image data;
MATLAB's <b>imread()</b> command can be used to create such a
dataset from a graphics image file.
</li>
<li>
<i>c</i> is a value, typically between 0 and 1, which controls the
diffusion. C = 0 means the picture is unchanged. C = 1 means each
pixel is completely replaced by a neighborhood average.
</li>
<li>
<i>k</i> indicates the number of steps of diffusion to carry out.
After k steps, a single black pixel will be diffused with pixels
up to k pixels away in all directions.
</li>
<li>
<i>g2</i> is an <i>m</i> by <i>n</i> <b>uint8</b>
array containing the diffused version of the image.
</li>
</ul>
</p>
<h3 align = "center">
Licensing:
</h3>
<p>
The computer code and data files described and made available on this web page
are distributed under
<a href = "../../txt/gnu_lgpl.txt">the GNU LGPL license.</a>
</p>
<h3 align = "center">
Languages:
</h3>
<p>
<b>IMAGE_DIFFUSE</b> is available in
<a href = "../../m_src/image_diffuse/image_diffuse.html">a MATLAB version</a>.
</p>
<h3 align = "center">
Related Data and Programs:
</h3>
<p>
<a href = "../../m_src/image_contrast/image_contrast.html">
IMAGE_CONTRAST</a>,
a MATLAB program which
applies image processing techniques to increase the contrast in an image.
</p>
<p>
<a href = "../../m_src/image_denoise/image_denoise.html">
IMAGE_DENOISE</a>,
a MATLAB library which
applies image processing techniques to remove noise from an image.
</p>
<p>
<a href = "../../m_src/image_edge/image_edge.html">
IMAGE_EDGE</a>,
a MATLAB program which
demonstrates a simple technique for edge detection in an image.
</p>
<p>
<a href = "../../m_src/image_match_genetic/image_match_genetic.html">
IMAGE_MATCH_GENETIC</a>,
a MATLAB program which
tries to match a 256x256 JPEG image by blending 32 colored rectangles,
using ideas from genetic algorithms,
based on an example by Nick Berry.
</p>
<p>
<a href = "../../m_src/image_noise/image_noise.html">
IMAGE_NOISE</a>,
a MATLAB library which
adds noise to an image.
</p>
<p>
<a href = "../../m_src/image_quantization/image_quantization.html">
IMAGE_QUANTIZATION</a>,
a MATLAB library which
demonstrates how the KMEANS algorithm can be used to reduce the number
of colors or shades of gray in an image.
</p>
<p>
<a href = "../../m_src/image_rgb_to_gray/image_rgb_to_gray.html">
IMAGE_RGB_TO_GRAY</a>,
a MATLAB function which
creates a grayscale version of an RGB image.
</p>
<p>
<a href = "../../m_src/image_threshold/image_threshold.html">
IMAGE_THRESHOLD</a>,
a MATLAB library which
makes a black and white version of a grayscale image by setting all pixels
below or above a threshold value to black or white.
</p>
<h3 align = "center">
Reference:
</h3>
<p>
MathWorks documentation for the Image Processing Toolbox is available at
<a href = "http://www.mathworks.com/access/helpdesk/help/pdf_doc/images/images_tb.pdf">
http://www.mathworks.com/access/helpdesk/help/pdf_doc/images/images_tb.pdf</a>.
</p>
<p>
<ul>
<li>
Jonas Gomes, Luiz Velho,<br>
Image Processing for Computer Graphics,<br>
Springer, 1997,<br>
ISBN: 0387948546,<br>
LC: T385.G65.
</li>
<li>
William Pratt,<br>
Digital Image Processing,<br>
Second Edition,<br>
Wiley, 1991,<br>
ISBN13: 978-0471857662,<br>
LC: TA1632.P7.
</li>
</ul>
</p>
<h3 align = "center">
Source Code:
</h3>
<p>
<ul>
<li>
<a href = "image_diffuse.m">image_diffuse.m</a>,
applies diffusion to a gray scale image.
</li>
</ul>
</p>
<h3 align = "center">
Examples and Tests:
</h3>
<p>
<b>FOOL</b> is an image which was originally a true black and white image;
that is, as a gray scale image, every pixel was set to 0 or 255.
<ul>
<li>
<a href = "fool.png">fool.png</a>,
the original image.
</li>
<li>
<a href = "fool_c0.05_k20.png">fool_c0.05_k20.png</a>,
the result for C = 0.05, K = 20;
</li>
<li>
<a href = "fool_c0.50_k01.png">fool_c0.50_k01.png</a>,
the result for C = 0.50, K = 1.
</li>
<li>
<a href = "fool_c0.50_k20.png">fool_c0.50_k20.png</a>,
the result for C = 0.50, K = 20.
</li>
<li>
<a href = "fool_c1.00_k01.png">fool_c1.00_k01.png</a>,
the result for C = 1.00, K = 1
</li>
</ul>
</p>
<p>
You can go up one level to <a href = "../m_src.html">
the MATLAB source codes</a>.
</p>
<hr>
<i>
Last revised on 22 July 2011.
</i>
<!-- John Burkardt -->
</body>
</html>