-
Notifications
You must be signed in to change notification settings - Fork 57
/
hermite_rule.html
374 lines (326 loc) · 10.4 KB
/
hermite_rule.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
<html>
<head>
<title>
HERMITE_RULE - Gauss-Hermite Quadrature Rules
</title>
</head>
<body bgcolor="#EEEEEE" link="#CC0000" alink="#FF3300" vlink="#000055">
<h1 align = "center">
HERMITE_RULE <br> Gauss-Hermite Quadrature Rules
</h1>
<hr>
<p>
<b>HERMITE_RULE</b>
is a MATLAB program which
generates a specific Gauss-Hermite quadrature rule,
based on user input.
</p>
<p>
The rule is written to three files for easy use as input
to other programs.
</p>
<p>
The <i>Gauss-Hermite quadrature rule</i> is used as follows:
<pre>
c * Integral ( -oo < x < +oo ) f(x) exp ( - b * ( x - a )^2 ) dx
</pre>
is to be approximated by
<pre>
Sum ( 1 <= i <= order ) w(i) * f(x(i))
</pre>
Generally, a Gauss-Hermite quadrature rule of <i>n</i> points will
produce the exact integral when f(x) is a polynomial of degree
<i>2n-1</i> or less.
</p>
<p>
The value of C in front of the integral depends on the user's
choice of the SCALE parameter:
<ul>
<li>
<i>scale=0</i>, then C = 1; this is the standard choice for
Gauss-Hermite quadrature.
</li>
<li>
<i>scale=1</i>, then C is a normalization factor so that
f(x)=1 will integrate to 1. This implies in turn that the
weights will sum to 1. This choice is appropriate when
using the rule to compute probabilities.
</li>
</ul>
</p>
<h3 align = "center">
Usage:
</h3>
<p>
<blockquote>
<b>hermite_rule</b> ( <i>order</i>, <i>a</i>, <i>b</i>, <i>scale</i>
<i>'filename'</i> )
</blockquote>
where
<ul>
<li>
<i>order</i> is the number of points in the quadrature rule.
</li>
<li>
<i>a</i> is the center point (default 0);
</li>
<li>
<i>b</i> is the scale factor (default 1);
</li>
<li>
<i>scale</i> is the normalization option (0/1). If 1,
then the weights are normalized to have unit sum;
</li>
<li>
<i>'filename'</i> specifies the output filenames:
<i>filename</i><b>_w.txt</b>,
<i>filename</i><b>_x.txt</b>, and <i>filename</i><b>_r.txt</b>,
containing the weights, abscissas, and interval limits.
</li>
</ul>
</p>
<h3 align = "center">
Licensing:
</h3>
<p>
The computer code and data files described and made available on this web page
are distributed under
<a href = "../../txt/gnu_lgpl.txt">the GNU LGPL license.</a>
</p>
<h3 align = "center">
Languages:
</h3>
<p>
<b>HERMITE_RULE</b> is available in
<a href = "../../c_src/hermite_rule/hermite_rule.html">a C version</a> and
<a href = "../../cpp_src/hermite_rule/hermite_rule.html">a C++ version</a> and
<a href = "../../f77_src/hermite_rule/hermite_rule.html">a FORTRAN77 version</a> and
<a href = "../../f_src/hermite_rule/hermite_rule.html">a FORTRAN90 version</a> and
<a href = "../../m_src/hermite_rule/hermite_rule.html">a MATLAB version.</a>
</p>
<h3 align = "center">
Related Data and Programs:
</h3>
<p>
<a href = "../../m_src/ccn_rule/ccn_rule.html">
CCN_RULE</a>,
a MATLAB program which
defines a nested Clenshaw Curtis quadrature rule.
</p>
<p>
<a href = "../../m_src/chebyshev1_rule/chebyshev1_rule.html">
CHEBYSHEV1_RULE</a>,
a MATLAB program which
can compute and print a Gauss-Chebyshev type 1 quadrature rule.
</p>
<p>
<a href = "../../m_src/chebyshev2_rule/chebyshev2_rule.html">
CHEBYSHEV2_RULE</a>,
a MATLAB program which
can compute and print a Gauss-Chebyshev type 2 quadrature rule.
</p>
<p>
<a href = "../../m_src/clenshaw_curtis_rule/clenshaw_curtis_rule.html">
CLENSHAW_CURTIS_RULE</a>,
a MATLAB program which
defines a Clenshaw Curtis quadrature rule.
</p>
<p>
<a href = "../../m_src/gegenbauer_rule/gegenbauer_rule.html">
GEGENBAUER_RULE</a>,
a MATLAB program which
can compute and print a Gauss-Gegenbauer quadrature rule.
</p>
<p>
<a href = "../../m_src/gen_hermite_rule/gen_hermite_rule.html">
GEN_HERMITE_RULE</a>,
a MATLAB program which
can compute and print a generalized Gauss-Hermite quadrature rule.
</p>
<p>
<a href = "../../m_src/gen_laguerre_rule/gen_laguerre_rule.html">
GEN_LAGUERRE_RULE</a>,
a MATLAB program which
can compute and print a generalized Gauss-Laguerre quadrature rule.
</p>
<p>
<a href = "../../m_src/hermite_exactness/hermite_exactness.html">
HERMITE_EXACTNESS</a>,
a MATLAB program which
tests the polynomial exactness of Gauss-Hermite quadrature rules.
</p>
<p>
<a href = "../../m_src/hermite_polynomial/hermite_polynomial.html">
HERMITE_POLYNOMIAL</a>,
a MATLAB library which
evaluates the physicist's Hermite polynomial, the probabilist's Hermite polynomial,
the Hermite function, and related functions.
</p>
<p>
<a href = "../../m_src/hermite_test_int/hermite_test_int.html">
HERMITE_TEST_INT</a>,
a MATLAB library which
defines test integrands for Hermite integrals with
interval (-oo,+oo) and density exp(-x^2).
</p>
<p>
<a href = "../../m_src/jacobi_rule/jacobi_rule.html">
JACOBI_RULE</a>,
a MATLAB program which
can compute and print a Gauss-Jacobi quadrature rule.
</p>
<p>
<a href = "../../m_src/laguerre_rule/laguerre_rule.html">
LAGUERRE_RULE</a>,
a MATLAB program which
can compute and print a Gauss-Laguerre quadrature rule.
</p>
<p>
<a href = "../../m_src/legendre_rule/legendre_rule.html">
LEGENDRE_RULE</a>,
a MATLAB program which
computes a Gauss-Legendre quadrature rule.
</p>
<p>
<a href = "../../m_src/line_felippa_rule/line_felippa_rule.html">
LINE_FELIPPA_RULE</a>,
a MATLAB library which
returns the points and weights of a Felippa quadrature rule
over the interior of a line segment in 1D.
</p>
<p>
<a href = "../../m_src/patterson_rule/patterson_rule.html">
PATTERSON_RULE</a>,
a MATLAB program which
computes a Gauss-Patterson quadrature rule.
</p>
<p>
<a href = "../../datasets/quadrature_rules_hermite_physicist/quadrature_rules_hermite_physicist.html">
QUADRATURE_RULES_HERMITE_PHYSICIST</a>,
a dataset directory which
contains Gauss-Hermite quadrature rules, for integration
on the interval (-oo,+oo), with weight function exp(-x^2).
</p>
<p>
<a href = "../../datasets/quadrature_rules_hermite_probabilist/quadrature_rules_hermite_probabilist.html">
QUADRATURE_RULES_HERMITE_PROBABILIST</a>,
a dataset directory which
contains Gauss-Hermite quadrature rules, for integration
on the interval (-oo,+oo), with weight function exp(-x^2/2).
</p>
<p>
<a href = "../../datasets/quadrature_rules_hermite_unweighted/quadrature_rules_hermite_unweighted.html">
QUADRATURE_RULES_HERMITE_UNWEIGHTED</a>,
a dataset directory which
contains Gauss-Hermite quadrature rules, for integration
on the interval (-oo,+oo), with weight function 1.
</p>
<p>
<a href = "../../m_src/quadrule/quadrule.html">
QUADRULE</a>,
a MATLAB library which
contains 1-dimensional quadrature
rules.
</p>
<p>
<a href = "../../m_src/truncated_normal_rule/truncated_normal_rule.html">
TRUNCATED_NORMAL_RULE</a>,
a MATLAB program which
computes a quadrature rule for a normal probability density function (PDF),
also called a Gaussian distribution, that has been
truncated to [A,+oo), (-oo,B] or [A,B].
</p>
<h3 align = "center">
Reference:
</h3>
<p>
<ol>
<li>
Milton Abramowitz, Irene Stegun,<br>
Handbook of Mathematical Functions,<br>
National Bureau of Standards, 1964,<br>
ISBN: 0-486-61272-4,<br>
LC: QA47.A34.
</li>
<li>
Philip Davis, Philip Rabinowitz,<br>
Methods of Numerical Integration,<br>
Second Edition,<br>
Dover, 2007,<br>
ISBN: 0486453391,<br>
LC: QA299.3.D28.
</li>
<li>
Sylvan Elhay, Jaroslav Kautsky,<br>
Algorithm 655:
IQPACK,
FORTRAN Subroutines for the Weights of Interpolatory Quadrature,<br>
ACM Transactions on Mathematical Software,<br>
Volume 13, Number 4, December 1987, pages 399-415.
</li>
<li>
Jaroslav Kautsky, Sylvan Elhay,<br>
Calculation of the Weights of Interpolatory Quadratures,<br>
Numerische Mathematik,<br>
Volume 40, 1982, pages 407-422.
</li>
<li>
Roger Martin, James Wilkinson,<br>
The Implicit QL Algorithm,<br>
Numerische Mathematik,<br>
Volume 12, Number 5, December 1968, pages 377-383.
</li>
<li>
Arthur Stroud, Don Secrest,<br>
Gaussian Quadrature Formulas,<br>
Prentice Hall, 1966,<br>
LC: QA299.4G3S7.
</li>
</ol>
</p>
<h3 align = "center">
Source Code:
</h3>
<p>
<ul>
<li>
<a href = "hermite_rule.m">hermite_rule.m</a>
the source code.
</li>
</ul>
</p>
<h3 align = "center">
Examples and Tests:
</h3>
<p>
HERM_O4 is a Hermite rule of order 4, created by the command
<pre>
hermite_rule ( 4, 0.0, 1.0, 0, 'herm_o4' )
</pre>
<ul>
<li>
<a href = "herm_o4_r.txt">herm_o4_r.txt</a>,
the region file;
</li>
<li>
<a href = "herm_o4_w.txt">herm_o4_w.txt</a>,
the weight file;
</li>
<li>
<a href = "herm_o4_x.txt">herm_o4_x.txt</a>,
the abscissa file;
</li>
</ul>
</p>
<p>
You can go up one level to <a href = "../m_src.html">
the MATLAB source codes</a>.
</p>
<hr>
<i>
Last revised on 06 February 2014.
</i>
<!-- John Burkardt -->
</body>
<!-- Initial HTML skeleton created by HTMLINDEX. -->
</html>