-
Notifications
You must be signed in to change notification settings - Fork 57
/
fem3d_project.html
328 lines (291 loc) · 10.3 KB
/
fem3d_project.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
<html>
<head>
<title>
FEM3D_PROJECT - Project Data onto a 3D Finite Element Mesh
</title>
</head>
<body bgcolor="#EEEEEE" link="#CC0000" alink="#FF3300" vlink="#000055">
<h1 align = "center">
FEM3D_PROJECT <br> Project Data onto a 3D Finite Element Mesh
</h1>
<hr>
<p>
<b>FEM3D_PROJECT</b>
is a MATLAB program which
projects a finite element function.
</p>
<p>
Let us suppose we have a region R and a "tet mesh" (tetrahedral mesh) of R, that is,
a set of nodes N1 and tetrahedrons T1 whose union is R. Let P1(I)(X,Y,Z)
be the finite element basis function associated with node N1(I).
Now let us suppose that we have a finite element function V1, that is
a scalar- or vector-valued function V1(X,Y,Z) defined over R,
with the formula
<blockquote>
V1(X,Y,Z) = sum ( 1 <= I <= NODE_NUM1 ) V1(I) * P1(I)(X,Y,Z)
</blockquote>
</p>
<p>
Now suppose we have a second tet mesh of R comprising
a set of nodes N2 and tetrahedrons T2. Can we determine an appropriate
set of finite element coefficients V2(I) which best approximate V1 in
the finite element space defined by N2 and T2? The finite element
coefficient vector V2 is defined by the following relationship:
<blockquote>
Integral Sum ( 1 <= I <= NODE_NUM2 ) V2(I) P2(I)(X,Y,Z) P2(J)(X,Y,Z) dx dy dz
= Integral V1(X,Y,Z) P2(J)(X,Y,Z) dx dy dz
</blockquote>
Thus, in particular, the function V1(X,Y,Z), which is defined on the first finite
element space, must be evaluated in a computation that uses the second finite element
space.
</p>
<p>
This procedure can be used to determine the least squares approximant to
data (actually, to the piecewise linear interpolant of that data) or to
determine the finite element coefficients appropriate when recomputing
a finite element solution from a fine mesh to a coarse mesh.
</p>
<p>
The sample data is given as three tables, each stored in a file:
<ul>
<li>
the <b>SAMPLE_NODES</b> file contains the 3D coordinates of sample points.
Every sample point is presumed to lie within the area covered by the finite
element mesh.
</li>
<li>
the <b>SAMPLE_ELEMENTS</b> file contains the indices of nodes that
form the elements. The elements are presumed to be 4-node tetrahedrons
that form a Delaunay tetrahedralization of the sample nodes.
</li>
<li>
the <b>SAMPLE_VALUES</b> file contains the value of some vector quantity
V at each sample point. The dimensionality of the V data is arbitrary.
</li>
</ul>
</p>
<p>
The finite element mesh is given as two tables, each stored in a file:
<ul>
<li>
the <b>FEM_NODES</b> file contains the 3D coordinates of nodes.
</li>
<li>
the <b>FEM_ELEMENTS</b> file contains the indices of nodes that
form the elements. The elements are presumed to be 4-node tetrahedrons.
</li>
</ul>
</p>
<p>
The program produces a new table <b>FEM_VALUES</b>, of the same dimensionality
as <b>SAMPLE_VALUES</b>. The vector <b>FEM_VALUES</b> can be used in conjunction with
the finite element mesh data to produce a finite element function that is
an approximant to the <b>SAMPLE_VALUES</b> data.
</p>
<h3 align = "center">
Usage:
</h3>
<p>
<blockquote>
<b>fem3d_project</b> ( <i>'sample_prefix'</i>, <i>'fem_prefix'</i> )
</blockquote>
where <i>'sample_prefix'</i> is the common prefix for the SAMPLE files:
<ul>
<li>
<i>'sample_prefix'</i><b>_nodes.txt</b>, the node coordinates (input);
</li>
<li>
<i>'sample_prefix'</i><b>_elements.txt</b>, the 4 nodes that make up each element (input);
</li>
<li>
<i>'sample_prefix'</i><b>_values.txt</b>, the data values (input);
</li>
</ul>
and <i>'fem_prefix'</i> is the common prefix for the FEM files:
<ul>
<li>
<i>'fem_prefix'</i><b>_nodes.txt</b>, the node coordinates (input);
</li>
<li>
<i>'fem_prefix'</i><b>_elements.txt</b>, the 4 nodes that make up each element (input);
</li>
<li>
<i>'fem_prefix'</i><b>_values.txt</b>, the data values (output).
</li>
</ul>
</p>
<p>
The file <i>fem_prefix</i>_values.txt is created by the program, and contains
the projections of the sample data values onto the finite element space, that is,
these may be regarded as coefficients of finite element functions
representing the projections of the sample data. Note that we may also regard
this operation as the refinement or coarsening of a finite element function,
in that we are transferring information from the ``sample'' space to the ``fem''
space.
</p>
<h3 align = "center">
Licensing:
</h3>
<p>
The computer code and data files described and made available on this web page
are distributed under
<a href = "../../txt/gnu_lgpl.txt">the GNU LGPL license.</a>
</p>
<h3 align = "center">
Languages:
</h3>
<p>
<b>FEM3D_PROJECT</b> is available in
<a href = "../../cpp_src/fem3d_project/fem3d_project.html">a C++ version</a> and
<a href = "../../f_src/fem3d_project/fem3d_project.html">a FORTRAN90 version</a> and
<a href = "../../m_src/fem3d_project/fem3d_project.html">a MATLAB version</a>.
</p>
<h3 align = "center">
Related Data and Programs:
</h3>
<p>
<a href = "../../m_src/fem1d_project/fem1d_project.html">
FEM1D_PROJECT</a>,
a MATLAB program which
projects data into a finite element space, including the least squares
approximation of data, or the projection of a finite element solution
from one mesh to another.
</p>
<p>
<a href = "../../m_src/fem2d_project/fem2d_project.html">
FEM2D_PROJECT</a>,
a MATLAB program which
projects a function F(X,Y,Z), given as a data, into a given finite element space
of piecewise linear triangular elements.
</p>
<p>
<a href = "../../data/fem3d/fem3d.html">
FEM3D</a>,
a data directory which
contains examples of 3D FEM files,
three text files that describe a 3D finite element geometry;
</p>
<p>
<a href = "../../m_src/fem3d_pack/fem3d_pack.html">
FEM3D_PACK</a>,
a MATLAB library which
contains utilities for 3D finite element calculations.
</p>
<p>
<a href = "../../m_src/fem3d_sample/fem3d_sample.html">
FEM3D_SAMPLE</a>,
a MATLAB program which
evaluates a finite element function defined on 3D tetrahedral mesh.
</p>
<h3 align = "center">
Reference:
</h3>
<p>
<ol>
<li>
Hans Rudolf Schwarz,<br>
Finite Element Methods,<br>
Academic Press, 1988,<br>
ISBN: 0126330107,<br>
LC: TA347.F5.S3313.
</li>
<li>
Gilbert Strang, George Fix,<br>
An Analysis of the Finite Element Method,<br>
Cambridge, 1973,<br>
ISBN: 096140888X,<br>
LC: TA335.S77.
</li>
<li>
Olgierd Zienkiewicz,<br>
The Finite Element Method,<br>
Sixth Edition,<br>
Butterworth-Heinemann, 2005,<br>
ISBN: 0750663200,<br>
LC: TA640.2.Z54.
</li>
</ol>
</p>
<h3 align = "center">
Source Code:
</h3>
<p>
<ul>
<li>
<a href = "fem3d_project.m">fem3d_project.m</a>, the source code.
</li>
</ul>
</p>
<h3 align = "center">
Examples and Tests:
</h3>
<p>
<b>LINEAR</b> starts with sample data for the vector function f(x)=[ 1, 2x, 3y, 4z ],
on an 8x8x8 grid of equally spaced nodes from [0.0,8.0]x[0.0,8.0], and projects this onto
a piecewise linear finite element meshes defined on equally spaced grids of
dimension 4x4x4, 2x2x2 and 1x1x1.
<ul>
<li>
<a href = "r8x8x8_t4_nodes.txt">r8x8x8_t3_nodes.txt</a>,
the sample nodes, on an 8x8x8 grid.
</li>
<li>
<a href = "r8x8x8_t4_elements.txt">r8x8_t4_elements.txt</a>,
elements that can be used to form an 8x8x8 finite element mesh associated
with the sample data. This is provide only so that a finite element
function can be formed with the original sample data.
</li>
<li>
<a href = "r8x8x8_t4_values.txt">r8x8_t4_values.txt</a>,
the sample nodal values.
</li>
<li>
<a href = "r4x4x4_t4_nodes.txt">r4x4x4_t4_nodes.txt</a>,
the FEM nodes for a 4x4x4 grid.
</li>
<li>
<a href = "r4x4x4_t4_elements.txt">r4x4x4_t4_elements.txt</a>,
the FEM elements for a 4x4x4 grid.
</li>
<li>
<a href = "r4x4x4_t4_values.txt">r4x4x4_t4_values.txt</a>,
the nodal values as projected from the 8x8x8 grid.
</li>
<li>
<a href = "r2x2x2_t4_nodes.txt">r2x2x2_t4_nodes.txt</a>,
the FEM nodes for a 2x2x2 grid.
</li>
<li>
<a href = "r2x2x2_t4_elements.txt">r2x2x2_t4_elements.txt</a>,
the FEM elements for a 2x2x2 grid.
</li>
<li>
<a href = "r2x2x2_t4_values.txt">r2x2x2_t4_values.txt</a>,
the nodal values as projected from the 8x8x8 grid.
</li>
<li>
<a href = "r1x1x1_t4_nodes.txt">r1x1x1_t4_nodes.txt</a>,
the FEM nodes for a 1x1x1 grid.
</li>
<li>
<a href = "r1x1x1_t4_elements.txt">r1x1x1_t4_elements.txt</a>,
the FEM elements for a 1x1x1 grid.
</li>
<li>
<a href = "r1x1x1_t4_values.txt">r1x1x1_t4_values.txt</a>,
the nodal values as projected from the 8x8x8 grid.
</li>
</ul>
</p>
<p>
You can go up one level to <a href = "../m_src.html">
the MATLAB source codes</a>.
</p>
<hr>
<i>
Last revised on 24 August 2009.
</i>
<!-- John Burkardt -->
</body>
<!-- Initial HTML skeleton created by HTMLINDEX. -->
</html>