-
Notifications
You must be signed in to change notification settings - Fork 57
/
fd1d_heat_implicit.html
432 lines (389 loc) · 12.3 KB
/
fd1d_heat_implicit.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
<html>
<head>
<title>
FD1D_HEAT_IMPLICIT - TIme Dependent 1D Heat Equation, Finite Difference, Implicit Time Stepping
</title>
</head>
<body bgcolor="#EEEEEE" link="#CC0000" alink="#FF3300" vlink="#000055">
<h1 align = "center">
FD1D_HEAT_IMPLICIT <br>
Finite Difference Solution of the<br>
Time Dependent 1D Heat Equation<br>
using Implicit Time Stepping
</h1>
<hr>
<p>
<b>FD1D_HEAT_IMPLICIT</b>
is a MATLAB program which
solves the time-dependent 1D heat equation, using the finite difference
method in space, and an implicit version of the method of lines to handle
integration in time.
</p>
<p>
This program solves
<pre>
dUdT - k * d2UdX2 = F(X,T)
</pre>
over the interval [A,B] with boundary conditions
<pre>
U(A,T) = UA(T),
U(B,T) = UB(T),
</pre>
over the time interval [T0,T1] with initial conditions
<pre>
U(X,T0) = U0(X)
</pre>
</p>
<p>
A second order finite difference is used to approximate the
second derivative in space.
</p>
<p>
The solver applies an
implicit backward Euler approximation to the first derivative in time.
</p>
<p>
The resulting finite difference form can be written as
<pre>
U(X,T+dt) - U(X,T) ( U(X-dx,+dtT) - 2 U(X,+dtT) + U(X+dx,+dtT) )
------------------ = F(X,T+dt) + k * ---------------------------------------------
dt dx * dx
</pre>
or, assuming we have solved for all values of U at time T, we have
<pre>
- k * dt / dx / dx * U(X-dt,T+dt)
+ ( 1 + 2 * k * dt / dx / dx ) * U(X, T+dt)
- k * dt / dx / dx * U(X+dt,T+dt)
= dt * F(X, T+dt)
+ U(X, T)
</pre>
which can be written as A*x=b, where A is a tridiagonal matrix whose
entries are the same for every time step.
</p>
<h3 align = "center">
Licensing:
</h3>
<p>
The computer code and data files described and made available on this web page
are distributed under
<a href = "../../txt/gnu_lgpl.txt">the GNU LGPL license.</a>
</p>
<h3 align = "center">
Languages:
</h3>
<p>
<b>FD1D_HEAT_IMPLICIT</b> is available in
<a href = "../../c_src/fd1d_heat_implicit/fd1d_heat_implicit.html">a C version</a> and
<a href = "../../cpp_src/fd1d_heat_implicit/fd1d_heat_implicit.html">a C++ version</a> and
<a href = "../../f77_src/fd1d_heat_implicit/fd1d_heat_implicit.html">a FORTRAN77 version</a> and
<a href = "../../f_src/fd1d_heat_implicit/fd1d_heat_implicit.html">a FORTRAN90 version</a> and
<a href = "../../m_src/fd1d_heat_implicit/fd1d_heat_implicit.html">a MATLAB version</a> and
<a href = "../../py_src/fd1d_heat_implicit/fd1d_heat_implicit.html">a Python version</a>.
</p>
<h3 align = "center">
Related Data and Programs:
</h3>
<p>
<a href = "../../m_src/fd1d_advection_ftcs/fd1d_advection_ftcs.html">
FD1D_ADVECTION_FTCS</a>,
a MATLAB program which
applies the finite difference method to solve the time-dependent
advection equation ut = - c * ux in one spatial dimension, with
a constant velocity, using the FTCS method, forward time difference,
centered space difference.
</p>
<p>
<a href = "../../m_src/fd1d_burgers_lax/fd1d_burgers_lax.html">
FD1D_BURGERS_LAX</a>,
a MATLAB program which
applies the finite difference method and the Lax-Wendroff method
to solve the non-viscous time-dependent Burgers equation
in one spatial dimension.
</p>
<p>
<a href = "../../m_src/fd1d_burgers_leap/fd1d_burgers_leap.html">
FD1D_BURGERS_LEAP</a>,
a MATLAB program which
applies the finite difference method and the leapfrog approach
to solve the non-viscous time-dependent Burgers equation in one spatial dimension.
</p>
<p>
<a href = "../../m_src/fd1d_bvp/fd1d_bvp.html">
FD1D_BVP</a>,
a MATLAB program which
applies the finite difference method
to a two point boundary value problem in one spatial dimension.
</p>
<p>
<a href = "../../m_src/fd1d_heat_explicit/fd1d_heat_explicit.html">
FD1D_HEAT_EXPLICIT</a>,
a MATLAB program which
uses the finite difference method to solve the time dependent
heat equation in 1D, using an explicit time step method.
</p>
<p>
<a href = "../../m_src/fd1d_heat_steady/fd1d_heat_steady.html">
FD1D_HEAT_STEADY</a>,
a MATLAB program which
uses the finite difference method to solve the steady (time independent)
heat equation in 1D.
</p>
<p>
<a href = "../../m_src/fd1d_predator_prey/fd1d_predator_prey.html">
FD1D_PREDATOR_PREY</a>,
a MATLAB program which
uses finite differences to solve a 1D predator prey problem.
</p>
<p>
<a href = "../../m_src/fd1d_wave/fd1d_wave.html">
FD1D_WAVE</a>,
a MATLAB program which
applies the finite difference method to solve the time-dependent
wave equation in one spatial dimension.
</p>
<p>
<a href = "../../m_src/fem_50_heat/fem_50_heat.html">
FEM_50_HEAT</a>,
a MATLAB program which
applies the finite element method to solve the 2D heat equation.
</p>
<p>
<a href = "../../m_src/fem1d/fem1d.html">
FEM1D</a>,
a MATLAB program which
applies the finite element
method, with piecewise linear basis functions, to a linear
two point boundary value problem;
</p>
<p>
<a href = "../../m_src/fem2d_heat/fem2d_heat.html">
FEM2D_HEAT</a>,
a MATLAB program which
applies the finite element method to solve the 2D heat equation.
</p>
<p>
<a href = "../../m_src/heat_oned/heat_oned.html">
HEAT_ONED</a>,
a MATLAB program which
solves the time-dependent 1D heat equation,
using the finite element method in space, and the backward Euler method
in time, by Jeff Borggaard.
</p>
<p>
<a href = "../../m_src/hot_pipe/hot_pipe.html">
HOT_PIPE</a>,
a MATLAB program which
uses <b>FEM_50_HEAT</b> to solve a heat problem in a pipe.
</p>
<p>
<a href = "../../m_src/hot_point/hot_point.html">
HOT_POINT</a>,
a MATLAB program which
uses <b>FEM_50_HEAT</b> to solve a heat problem with a point source.
</p>
<h3 align = "center">
Reference:
</h3>
<p>
<ol>
<li>
George Lindfield, John Penny,<br>
Numerical Methods Using MATLAB,<br>
Second Edition,<br>
Prentice Hall, 1999,<br>
ISBN: 0-13-012641-1,<br>
LC: QA297.P45.
</li>
</ol>
</p>
<h3 align = "center">
Source Code:
</h3>
<p>
<ul>
<li>
<a href = "fd1d_heat_implicit.m">fd1d_heat_implicit.m</a>,
carries out the calculation;
</li>
<li>
<a href = "fd1d_heat_implicit_cfl.m">fd1d_heat_implicit_cfl.m</a>,
computes the Courant-Friedrichs-Loewy coefficient;
</li>
<li>
<a href = "fd1d_heat_implicit_matrix.m">fd1d_heat_implicit_matrix.m</a>,
sets the system matrix.
</li>
<li>
<a href = "r8mat_write.m">r8mat_write.m</a>,
writes an R8MAT to a file.
</li>
<li>
<a href = "r8vec_write.m">r8vec_write.m</a>,
writes an R8VEC to a file.
</li>
<li>
<a href = "timestamp.m">timestamp.m</a>,
prints the YMDHMS date as a timestamp;
</li>
</ul>
</p>
<h3 align = "center">
Examples and Tests:
</h3>
<p>
<ul>
<li>
<a href = "fd1d_heat_implicit_test.m">fd1d_heat_implicit_test.m</a>,
runs all the tests.
</li>
<li>
<a href = "fd1d_heat_implicit_test01.m">fd1d_heat_implicit_test01.m</a>,
runs test 1;
</li>
<li>
<a href = "fd1d_heat_implicit_test02.m">fd1d_heat_implicit_test02.m</a>,
runs test 2;
</li>
<li>
<a href = "fd1d_heat_implicit_test03.m">fd1d_heat_implicit_test03.m</a>,
runs test 3;
</li>
<li>
<a href = "fd1d_heat_implicit_test_output.txt">fd1d_heat_implicit_test_output.txt</a>,
the output file.
</li>
</ul>
</p>
<p>
<b>TEST01</b> runs with initial condition 50 everywhere, boundary conditions
of 90 on the left and 70 on the right, and no right hand side source term.
<ul>
<li>
<a href = "bc_test01.m">bc_test01.m</a>,
enforces the boundary conditions.
</li>
<li>
<a href = "h_test01.txt">h_test01.txt</a>,
the computed H data.
</li>
<li>
<a href = "ic_test01.m">ic_test01.m</a>,
enforces the initial condition.
</li>
<li>
<a href = "k_test01.m">k_test01.m</a>,
sets the conductivity.
</li>
<li>
<a href = "plot_test01.png">plot_test01.png</a>,
a PNG image of the solution.
</li>
<li>
<a href = "rhs_test01.m">rhs_test01.m</a>,
supplies the right hand side source term.
</li>
<li>
<a href = "t_test01.txt">t_test01.txt</a>,
the T data.
</li>
<li>
<a href = "x_test01.txt">x_test01.txt</a>,
the X data.
</li>
</ul>
</p>
<p>
<b>TEST02</b> uses an exact solution of g(x,t) = exp ( - t ) .* sin ( sqrt ( k ) * x ).
<ul>
<li>
<a href = "bc_test02.m">bc_test02.m</a>,
enforces the boundary conditions.
</li>
<li>
<a href = "exact_test02.m">exact_test02.m</a>,
evaluates the exact solution.
</li>
<li>
<a href = "g_test02.txt">g_test02.txt</a>,
the exact data.
</li>
<li>
<a href = "h_test02.txt">h_test02.txt</a>,
the computed H data.
</li>
<li>
<a href = "ic_test02.m">ic_test02.m</a>,
enforces the initial condition.
</li>
<li>
<a href = "k_test02.m">k_test02.m</a>,
sets the conductivity.
</li>
<li>
<a href = "plot_test02.png">plot_test02.png</a>,
a PNG image of the solution.
</li>
<li>
<a href = "rhs_test02.m">rhs_test02.m</a>,
supplies the right hand side source term.
</li>
<li>
<a href = "t_test02.txt">t_test02.txt</a>,
the T data.
</li>
<li>
<a href = "x_test02.txt">x_test02.txt</a>,
the X data.
</li>
</ul>
</p>
<p>
<b>TEST03</b> runs on the interval -5 <= X <= 5, with initial condition 15 on the
entire left and 25 on the entire right. The solution should settle down to a
straight line from the left boundary to the right.
<ul>
<li>
<a href = "bc_test03.m">bc_test03.m</a>,
enforces the boundary conditions.
</li>
<li>
<a href = "h_test03.txt">h_test03.txt</a>,
the computed H data.
</li>
<li>
<a href = "ic_test03.m">ic_test03.m</a>,
enforces the initial condition.
</li>
<li>
<a href = "k_test03.m">k_test03.m</a>,
sets the conductivity.
</li>
<li>
<a href = "plot_test03.png">plot_test031.png</a>,
a PNG image of the solution.
</li>
<li>
<a href = "rhs_test03.m">rhs_test03.m</a>,
supplies the right hand side source term.
</li>
<li>
<a href = "t_test03.txt">t_test03.txt</a>,
the T data.
</li>
<li>
<a href = "x_test03.txt">x_test03.txt</a>,
the X data.
</li>
</ul>
</p>
<p>
You can go up one level to <a href = "../m_src.html">
the MATLAB source codes</a>.
</p>
<hr>
<i>
Last revised on 31 January 2012.
</i>
<!-- John Burkardt -->
</body>
</html>