-
Notifications
You must be signed in to change notification settings - Fork 57
/
fd1d_bvp.html
393 lines (349 loc) · 10.8 KB
/
fd1d_bvp.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
<html>
<head>
<title>
FD1D_BVP - Finite Difference Method, 1D, Boundary Value Problem
</title>
</head>
<body bgcolor="#EEEEEE" link="#CC0000" alink="#FF3300" vlink="#000055">
<h1 align = "center">
FD1D_BVP <br> Finite Difference Method, 1D, Boundary Value Problem
</h1>
<hr>
<p>
<b>FD1D_BVP</b>
is a MATLAB program which
applies the finite difference method to solve
a two point boundary value problem in one spatial dimension.
</p>
<p>
The boundary value problem (BVP) that is to be solved has the form:
<pre>
- d/dx ( a(x) * du/dx ) + c(x) * u(x) = f(x)
</pre>
in the interval X(1) < x < X(N). The functions a(x), c(x), and f(x) are
given functions, and a formula for a'(x) is also available.
</p>
<p>
Boundary conditions are applied at the endpoints, and in this case,
these are assumed to have the form:
<pre>
u(X(1)) = 0.0;
u(X(N)) = 0.0.
</pre>
</p>
<p>
To compute a finite difference approximation, a set of n
nodes is defined over the interval, and, at each interior node,
a discretized version of the BVP is written, with u''(x) and u'(x)
approximated by central differences.
</p>
<h3 align = "center">
Usage:
</h3>
<p>
<blockquote>
[<i>u</i> = <b>fd1d_bvp</b> ( <i>n</i>,
<i>@a</i>, <i>@aprime</i>, <i>@c</i>, <i>@f</i>, <i>x</i> )
</blockquote>
where
<ul>
<li>
<i>n</i> the number of nodes.
</li>
<li>
<i>@a</i> the function which evaluates a(x);
</li>
<li>
<i>@aprime</i> the function which evaluates a'(x);
</li>
<li>
<i>@c</i> the function which evaluates c(x);
</li>
<li>
<i>@f</i> the function which evaluates f(x).
</li>
<li>
<i>x</i> the vector of n nodes, which may be nonuniformly spaced.
</li>
<li>
<i>u</i> the output vector of n finite difference values.
</li>
</ul>
</p>
<h3 align = "center">
Licensing:
</h3>
<p>
The computer code and data files described and made available on this web page
are distributed under
<a href = "../../txt/gnu_lgpl.txt">the GNU LGPL license.</a>
</p>
<h3 align = "center">
Languages:
</h3>
<p>
<b>FD1D_BVP</b> is available in
<a href = "../../c_src/fd1d_bvp/fd1d_bvp.html">a C version</a> and
<a href = "../../cpp_src/fd1d_bvp/fd1d_bvp.html">a C++ version</a> and
<a href = "../../f77_src/fd1d_bvp/fd1d_bvp.html">a FORTRAN77 version</a> and
<a href = "../../f_src/fd1d_bvp/fd1d_bvp.html">a FORTRAN90 version</a> and
<a href = "../../m_src/fd1d_bvp/fd1d_bvp.html">a MATLAB version</a>.
</p>
<h3 align = "center">
Related Data and Programs:
</h3>
<p>
<a href = "../../m_src/bvp4c/bvp4c.html">
BVP4C</a>,
MATLAB programs which
illustrate how to use the MATLAB command <b>bvp4c()</b>, which can solve
boundary value problems (BVP's) in one spatial dimension.
</p>
<p>
<a href = "../../m_src/fd1d_advection_ftcs/fd1d_advection_ftcs.html">
FD1D_ADVECTION_FTCS</a>,
a MATLAB program which
applies the finite difference method to solve the time-dependent
advection equation ut = - c * ux in one spatial dimension, with
a constant velocity, using the FTCS method, forward time difference,
centered space difference.
</p>
<p>
<a href = "../../m_src/fd1d_burgers_lax/fd1d_burgers_lax.html">
FD1D_BURGERS_LAX</a>,
a MATLAB program which
applies the finite difference method and the Lax-Wendroff method
to solve the non-viscous time-dependent Burgers equation
in one spatial dimension.
</p>
<p>
<a href = "../../m_src/fd1d_burgers_leap/fd1d_burgers_leap.html">
FD1D_BURGERS_LEAP</a>,
a MATLAB program which
applies the finite difference method and the leapfrog approach
to solve the non-viscous time-dependent Burgers equation in one spatial dimension.
</p>
<p>
<a href = "../../m_src/fd1d_display/fd1d_display.html">
FD1D_DISPLAY</a>,
a MATLAB program which
reads a pair of files defining a 1D finite difference model, and plots the data.
</p>
<p>
<a href = "../../m_src/fd1d_heat_explicit/fd1d_heat_explicit.html">
FD1D_HEAT_EXPLICIT</a>,
a MATLAB program which
uses the finite difference method and explicit time stepping
to solve the time dependent heat equation in 1D.
</p>
<p>
<a href = "../../m_src/fd1d_heat_implicit/fd1d_heat_implicit.html">
FD1D_HEAT_IMPLICIT</a>,
a MATLAB program which
uses the finite difference method and implicit time stepping
to solve the time dependent heat equation in 1D.
</p>
<p>
<a href = "../../m_src/fd1d_heat_steady/fd1d_heat_steady.html">
FD1D_HEAT_STEADY</a>,
a MATLAB program which
uses the finite difference method to solve the steady (time independent)
heat equation in 1D.
</p>
<p>
<a href = "../../m_src/fd1d_predator_prey/fd1d_predator_prey.html">
FD1D_PREDATOR_PREY</a>,
a MATLAB program which
implements a finite difference algorithm for predator-prey system
with spatial variation in 1D.
</p>
<p>
<a href = "../../m_src/fd1d_wave/fd1d_wave.html">
FD1D_WAVE</a>,
a MATLAB program which
applies the finite difference method to solve the time-dependent
wave equation in one spatial dimension.
</p>
<p>
<a href = "../../m_src/fem1d/fem1d.html">
FEM1D</a>,
a MATLAB program which
applies the finite element method to a linear two point boundary value problem
in a 1D region.
</p>
<p>
<a href = "../../m_src/fem1d_bvp_linear/fem1d_bvp_linear.html">
FEM1D_BVP_LINEAR</a>,
a MATLAB program which
applies the finite element method, with piecewise linear elements,
to a two point boundary value problem in one spatial dimension.
</p>
<h3 align = "center">
Reference:
</h3>
<p>
<ol>
<li>
Dianne O'Leary,<br>
Finite Differences and Finite Elements: Getting to Know You,<br>
Computing in Science and Engineering,<br>
Volume 7, Number 3, May/June 2005.
</li>
<li>
Dianne O'Leary,<br>
Scientific Computing with Case Studies,<br>
SIAM, 2008,<br>
ISBN13: 978-0-898716-66-5,<br>
LC: QA401.O44.
</li>
<li>
Hans Rudolf Schwarz,<br>
Finite Element Methods,<br>
Academic Press, 1988,<br>
ISBN: 0126330107,<br>
LC: TA347.F5.S3313..
</li>
<li>
Gilbert Strang, George Fix,<br>
An Analysis of the Finite Element Method,<br>
Cambridge, 1973,<br>
ISBN: 096140888X,<br>
LC: TA335.S77.
</li>
<li>
Olgierd Zienkiewicz,<br>
The Finite Element Method,<br>
Sixth Edition,<br>
Butterworth-Heinemann, 2005,<br>
ISBN: 0750663200,<br>
LC: TA640.2.Z54
</li>
</ol>
</p>
<h3 align = "center">
Source Code:
</h3>
<p>
<ul>
<li>
<a href = "fd1d_bvp.m">fd1d_bvp.m</a>,
is the program.
</li>
<li>
<a href = "r8mat_write.m">r8mat_write.m</a>,
writes an R8MAT file.
</li>
<li>
<a href = "timestamp.m">timestamp.m</a>,
prints the current YMDHMS date as a timestamp.
</li>
</ul>
</p>
<h3 align = "center">
Examples and Tests:
</h3>
<p>
<b>FD1D_BVP_TEST</b> runs the first five example problems described
by Dianne O'Leary.
<ul>
<li>
<a href = "fd1d_bvp_test.m">fd1d_bvp_test.m</a>,
a program which runs several test cases.
</li>
<li>
<a href = "fd1d_bvp_test_output.txt">fd1d_bvp_test_output.txt</a>,
the output file.
</li>
</ul>
</p>
<p>
<ul>
<li>
<a href = "fd1d_bvp_test01_nodes.txt">fd1d_bvp_test01_nodes.txt</a>,
the nodes for test 1.
</li>
<li>
<a href = "fd1d_bvp_test01_values.txt">fd1d_bvp_test01_values.txt</a>,
the computed and exact values for test 1.
</li>
<li>
<a href = "fd1d_bvp_test01.png">fd1d_bvp_test01.png</a>,
a PNG image of a plot of the computed and exact values.
</li>
</ul>
</p>
<p>
<ul>
<li>
<a href = "fd1d_bvp_test02_nodes.txt">fd1d_bvp_test02_nodes.txt</a>,
the nodes for test 2.
</li>
<li>
<a href = "fd1d_bvp_test02_values.txt">fd1d_bvp_test02_values.txt</a>,
the computed and exact values for test 2.
</li>
<li>
<a href = "fd1d_bvp_test02.png">fd1d_bvp_test02.png</a>,
a PNG image of a plot of the computed and exact values.
</li>
</ul>
</p>
<p>
<ul>
<li>
<a href = "fd1d_bvp_test03_nodes.txt">fd1d_bvp_test03_nodes.txt</a>,
the nodes for test 3.
</li>
<li>
<a href = "fd1d_bvp_test03_values.txt">fd1d_bvp_test03_values.txt</a>,
the computed and exact values for test 3.
</li>
<li>
<a href = "fd1d_bvp_test03.png">fd1d_bvp_test03.png</a>,
a PNG image of a plot of the computed and exact values.
</li>
</ul>
</p>
<p>
<ul>
<li>
<a href = "fd1d_bvp_test04_nodes.txt">fd1d_bvp_test04_nodes.txt</a>,
the nodes for test 4
</li>
<li>
<a href = "fd1d_bvp_test04_values.txt">fd1d_bvp_test04_values.txt</a>,
the computed and exact values for test 4.
</li>
<li>
<a href = "fd1d_bvp_test04.png">fd1d_bvp_test04.png</a>,
a PNG image of a plot of the computed and exact values.
</li>
</ul>
</p>
<p>
<ul>
<li>
<a href = "fd1d_bvp_test05_nodes.txt">fd1d_bvp_test05_nodes.txt</a>,
the nodes for test 5.
</li>
<li>
<a href = "fd1d_bvp_test05_values.txt">fd1d_bvp_test05_values.txt</a>,
the computed and exact values for test 5.
</li>
<li>
<a href = "fd1d_bvp_test05.png">fd1d_bvp_test05.png</a>,
a PNG image of a plot of the computed and exact values.
</li>
</ul>
</p>
<p>
You can go up one level to <a href = "../m_src.html">
the MATLAB source codes</a>.
</p>
<hr>
<i>
Last revised on 29 January 2011.
</i>
<!-- John Burkardt -->
</body>
</html>