-
Notifications
You must be signed in to change notification settings - Fork 57
/
fd1d_burgers_leap.html
254 lines (212 loc) · 6.98 KB
/
fd1d_burgers_leap.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
<html>
<head>
<title>
FD1D_BURGERS_LEAP - Finite Difference Non-viscous Burgers Equation, Leapfrog Method
</title>
</head>
<body bgcolor="#EEEEEE" link="#CC0000" alink="#FF3300" vlink="#000055">
<h1 align = "center">
FD1D_BURGERS_LEAP <br> Finite Difference Non-viscous Burgers Equation, Leapfrog Method
</h1>
<hr>
<p>
<b>FD1D_BURGERS_LEAP</b> is a MATLAB program which
solves the nonviscous time-dependent Burgers equation using finite differences
and the leapfrog method.
</p>
<p>
The function u(x,t) is to be solved for in the equation:
<blockquote>
du/dt + u * du/dx = 0
</blockquote>
for a <= x <= b and t_init <= t <= t_last.
</p>
<p>
Problem data includes an initial condition for u(x,t_init), and the boundary
value functions u(a,t) and u(b,t).
</p>
<p>
The non-viscous Burgers equation can develop shock waves or discontinuities.
</p>
<h3 align = "center">
Usage:
</h3>
<p>
<blockquote>
<b>fd1d_burgers_leap</b>
</blockquote>
runs the program.
</p>
<h3 align = "center">
Licensing:
</h3>
<p>
The computer code and data files described and made available on this web page
are distributed under
<a href = "../../txt/gnu_lgpl.txt">the GNU LGPL license.</a>
</p>
<h3 align = "center">
Languages:
</h3>
<p>
<b>FD1D_BURGERS_LEAP</b> is available in
<a href = "../../c_src/fd1d_burgers_leap/fd1d_burgers_leap.html">a C version</a> and
<a href = "../../cpp_src/fd1d_burgers_leap/fd1d_burgers_leap.html">a C++ version</a> and
<a href = "../../f77_src/fd1d_burgers_leap/fd1d_burgers_leap.html">a FORTRAN77 version</a> and
<a href = "../../f_src/fd1d_burgers_leap/fd1d_burgers_leap.html">a FORTRAN90 version</a> and
<a href = "../../m_src/fd1d_burgers_leap/fd1d_burgers_leap.html">a MATLAB version</a>.
</p>
<h3 align = "center">
Related Data and Programs:
</h3>
<p>
<a href = "../../datasets/burgers/burgers.html">
BURGERS</a>,
a dataset directory which
contains some solutions to the viscous Burgers equation.
</p>
<p>
<a href = "../../math_src/burgers_characteristics/burgers_characteristics.html">
BURGERS_CHARACTERISTICS</a>,
a MATHEMATICA program which
solves the time dependent inviscid Burgers equation using the method of characteristics,
by Mikel Landajuela.
</p>
<p>
<a href = "../../m_src/burgers_solution/burgers_solution.html">
BURGERS_SOLUTION</a>,
a MATLAB library which
evaluates an exact solution of the time-dependent 1D viscous Burgers equation.
</p>
<p>
<a href = "../../m_src/burgers_steady_viscous/burgers_steady_viscous.html">
BURGERS_STEADY_VISCOUS</a>,
a MATLAB library which
solves the steady (time-independent) viscous Burgers equation
using a finite difference discretization of the conservative form
of the equation, and then applying Newton's method to solve the
resulting nonlinear system.
</p>
<p>
<a href = "../../m_src/burgers_time_viscous/burgers_time_viscous.html">
BURGERS_TIME_VISCOUS</a>,
a MATLAB library which
solves the time-dependent viscous Burgers equation
using a finite difference discretization of the conservative form
of the equation.
</p>
<p>
<a href = "../../m_src/fd1d_advection_ftcs/fd1d_advection_ftcs.html">
FD1D_ADVECTION_FTCS</a>,
a MATLAB program which
applies the finite difference method to solve the time-dependent
advection equation ut = - c * ux in one spatial dimension, with
a constant velocity, using the FTCS method, forward time difference,
centered space difference.
</p>
<p>
<a href = "../../m_src/fd1d_burgers_lax/fd1d_burgers_lax.html">
FD1D_BURGERS_LAX</a>,
a MATLAB program which
applies the finite difference method and the Lax-Wendroff method
to solve the non-viscous time-dependent Burgers equation
in one spatial dimension.
</p>
<p>
<a href = "../../m_src/fd1d_bvp/fd1d_bvp.html">
FD1D_BVP</a>,
a MATLAB program which
applies the finite difference method
to a two point boundary value problem in one spatial dimension.
</p>
<p>
<a href = "../../m_src/fd1d_heat_explicit/fd1d_heat_explicit.html">
FD1D_HEAT_EXPLICIT</a>,
a MATLAB program which
uses the finite difference method and explicit time stepping
to solve the time dependent heat equation in 1D.
</p>
<p>
<a href = "../../m_src/fd1d_heat_implicit/fd1d_heat_implicit.html">
FD1D_HEAT_IMPLICIT</a>,
a MATLAB program which
uses the finite difference method and implicit time stepping
to solve the time dependent heat equation in 1D.
</p>
<p>
<a href = "../../m_src/fd1d_heat_steady/fd1d_heat_steady.html">
FD1D_HEAT_STEADY</a>,
a MATLAB program which
uses the finite difference method to solve the steady (time independent)
heat equation in 1D.
</p>
<p>
<a href = "../../m_src/fd1d_predator_prey/fd1d_predator_prey.html">
FD1D_PREDATOR_PREY</a>,
a MATLAB program which
implements a finite difference algorithm for predator-prey system
with spatial variation in 1D.
</p>
<p>
<a href = "../../m_src/fd1d_wave/fd1d_wave.html">
FD1D_WAVE</a>,
a MATLAB program which
applies the finite difference method to solve the time-dependent
wave equation in one spatial dimension.
</p>
<p>
<a href = "../../m_src/pce_burgers/pce_burgers.html">
PCE_BURGERS</a>,
a MATLAB program which
defines and solves a version of the time-dependent viscous Burgers equation,
with uncertain viscosity, using a polynomial chaos expansion in terms
of Hermite polynomials,
by Gianluca Iaccarino.
</p>
<h3 align = "center">
Reference:
</h3>
<p>
<ol>
<li>
Daniel Zwillinger,<br>
Handbook of Differential Equations,<br>
Academic Press, 1997,<br>
ISBN: 0127843965,<br>
LC: QA371.Z88.
</li>
</ol>
</p>
<h3 align = "center">
Source Code:
</h3>
<p>
<ul>
<li>
<a href = "fd1d_burgers_leap.m">fd1d_burgers_leap.m</a>, the source code.
</li>
</ul>
</p>
<h3 align = "center">
Examples and Tests:
</h3>
<p>
<ul>
<li>
<a href = "fd1d_burgers_leap_output.txt">fd1d_burgers_leap_output.txt</a>,
the output file.
</li>
</ul>
</p>
<p>
You can go up one level to <a href = "../m_src.html">
the MATLAB source codes</a>.
</p>
<hr>
<i>
Last revised on 18 August 2010.
</i>
<!-- John Burkardt -->
</body>
<!-- Initial HTML skeleton created by HTMLINDEX. -->
</html>