-
Notifications
You must be signed in to change notification settings - Fork 57
/
fd1d_advection_ftcs.html
257 lines (219 loc) · 7.36 KB
/
fd1d_advection_ftcs.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
<html>
<head>
<title>
FD1D_ADVECTION_FTCS - Finite Difference Method, 1D Advection Equation, Forward Time, Centered Space
</title>
</head>
<body bgcolor="#EEEEEE" link="#CC0000" alink="#FF3300" vlink="#000055">
<h1 align = "center">
FD1D_ADVECTION_FTCS <br>
Finite Difference Method<br>
1D Advection Equation<br>
Forward Time Difference, Centered Space Difference
</h1>
<hr>
<p>
<b>FD1D_ADVECTION_FTCS</b>
is a MATLAB program which
applies the finite difference method to solve the time-dependent
advection equation ut = - c * ux in one spatial dimension, with
a constant velocity, using the FTCS method, forward time difference,
centered space difference.
</p>
<p>
We solve the constant-velocity advection equation in 1D,
<pre>
du/dt = - c du/dx
</pre>
over the interval:
<pre>
0.0 <= x <= 1.0
</pre>
with periodic boundary conditions, and
with a given initial condition
<pre>
u(0,x) = (10x-4)^2 (6-10x)^2 for 0.4 <= x <= 0.6
= 0 elsewhere.
</pre>
</p>
<p>
We use a method known as FTCS:
<ul>
<li>
FT: Forward Time : du/dt = (u(t+dt,x)-u(t,x))/dt
</li>
<li>
CS: Centered Space: du/dx = (u(t,x+dx)-u(t,x-dx))/2/dx
</li>
</ul>
</p>
<p>
The FTCS method is <i>unstable</i> for the advection problem.
One purpose of this example is to demonstrate that fact.
</p>
<p>
For our simple case, the advection velocity is constant
in time and space. Therefore, (given our periodic boundary conditions),
the solution should simply move smoothly from left to right, returning
on the left again. Instead, because of the instabilities, we see
that the solution quickly becomes dominated by erroneous oscillations.
</p>
<p>
There are more sophisticated methods for the advection problem,
which do not exhibit this behavior.
</p>
<h3 align = "center">
Licensing:
</h3>
<p>
The computer code and data files described and made available on this web page
are distributed under
<a href = "../../txt/gnu_lgpl.txt">the GNU LGPL license.</a>
</p>
<h3 align = "center">
Languages:
</h3>
<p>
<b>FD1D_ADVECTION_FTCS</b> is available in
<a href = "../../c_src/fd1d_advection_ftcs/fd1d_advection_ftcs.html">a C version</a> and
<a href = "../../cpp_src/fd1d_advection_ftcs/fd1d_advection_ftcs.html">a C++ version</a> and
<a href = "../../f77_src/fd1d_advection_ftcs/fd1d_advection_ftcs.html">a FORTRAN77 version</a> and
<a href = "../../f_src/fd1d_advection_ftcs/fd1d_advection_ftcs.html">a FORTRAN90 version</a> and
<a href = "../../m_src/fd1d_advection_ftcs/fd1d_advection_ftcs.html">a MATLAB version</a>.
</p>
<h3 align = "center">
Related Data and Programs:
</h3>
<p>
<a href = "../../m_src/fd1d_advection_diffusion_steady/fd1d_advection_diffusion_steady.html">
FD1D_ADVECTION_DIFFUSION_STEADY</a>,
a MATLAB program which
applies the finite difference method to solve the
steady advection diffusion equation v*ux-k*uxx=0 in
one spatial dimension, with constant velocity v and diffusivity k.
</p>
<p>
<a href = "../../m_src/fd1d_advection_lax/fd1d_advection_lax.html">
FD1D_ADVECTION_LAX</a>,
a MATLAB program which
applies the finite difference method to solve the time-dependent
advection equation ut = - c * ux in one spatial dimension, with
a constant velocity, using the Lax method to treat the time derivative.
</p>
<p>
<a href = "../../m_src/fd1d_advection_lax_wendroff/fd1d_advection_lax_wendroff.html">
FD1D_ADVECTION_LAX_WENDROFF</a>,
a MATLAB program which
applies the finite difference method to solve the time-dependent
advection equation ut = - c * ux in one spatial dimension, with
a constant velocity, using the Lax-Wendroff method to treat the time derivative.
</p>
<p>
<a href = "../../m_src/fd1d_burgers_lax/fd1d_burgers_lax.html">
FD1D_BURGERS_LAX</a>,
a MATLAB program which
applies the finite difference method and the Lax-Wendroff method
to solve the non-viscous time-dependent Burgers equation
in one spatial dimension.
</p>
<p>
<a href = "../../m_src/fd1d_burgers_leap/fd1d_burgers_leap.html">
FD1D_BURGERS_LEAP</a>,
a MATLAB program which
applies the finite difference method and the leapfrog approach
to solve the non-viscous time-dependent Burgers equation in one spatial dimension.
</p>
<p>
<a href = "../../m_src/fd1d_bvp/fd1d_bvp.html">
FD1D_BVP</a>,
a MATLAB program which
applies the finite difference method
to a two point boundary value problem in one spatial dimension.
</p>
<p>
<a href = "../../m_src/fd1d_heat_explicit/fd1d_heat_explicit.html">
FD1D_HEAT_EXPLICIT</a>,
a MATLAB program which
uses the finite difference method and explicit time stepping
to solve the time dependent heat equation in 1D.
</p>
<p>
<a href = "../../m_src/fd1d_heat_implicit/fd1d_heat_implicit.html">
FD1D_HEAT_IMPLICIT</a>,
a MATLAB program which
uses the finite difference method and implicit time stepping
to solve the time dependent heat equation in 1D.
</p>
<p>
<a href = "../../m_src/fd1d_heat_steady/fd1d_heat_steady.html">
FD1D_HEAT_STEADY</a>,
a MATLAB program which
uses the finite difference method to solve the steady (time independent)
heat equation in 1D.
</p>
<p>
<a href = "../../m_src/fd1d_predator_prey/fd1d_predator_prey.html">
FD1D_PREDATOR_PREY</a>,
a MATLAB program which
implements a finite difference algorithm for predator-prey system
with spatial variation in 1D.
</p>
<p>
<a href = "../../m_src/fd1d_wave/fd1d_wave.html">
FD1D_WAVE</a>,
a MATLAB program which
applies the finite difference method to solve the time-dependent
wave equation utt = c * uxx in one spatial dimension.
</p>
<h3 align = "center">
Reference:
</h3>
<p>
<ol>
<li>
George Lindfield, John Penny,<br>
Numerical Methods Using MATLAB,<br>
Second Edition,<br>
Prentice Hall, 1999,<br>
ISBN: 0-13-012641-1,<br>
LC: QA297.P45.
</li>
</ol>
</p>
<h3 align = "center">
Source Code:
</h3>
<p>
<ul>
<li>
<a href = "fd1d_advection_ftcs.m">fd1d_advection_ftcs.m</a>,
the source code.
</li>
</ul>
</p>
<h3 align = "center">
Examples and Tests:
</h3>
<p>
<ul>
<li>
<a href = "fd1d_advection_ftcs_output.txt">fd1d_advection_ftcs_output.txt</a>,
the output file.
</li>
<li>
<a href = "fd1d_advection_ftcs.png">fd1d_advection_ftcs.png</a>,
an image of the solution.
</li>
</ul>
</p>
<p>
You can go up one level to <a href = "../m_src.html">
the MATLAB source codes</a>.
</p>
<hr>
<i>
Last revised on 25 December 2012.
</i>
<!-- John Burkardt -->
</body>
</html>