-
Notifications
You must be signed in to change notification settings - Fork 75
/
Copy pathtest.py
187 lines (159 loc) · 7.6 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import os
import torch
from diffusers import UNet2DConditionModel, DDIMScheduler
from pipelines.dual_encoder_pipeline import StableDiffusionImg2ImgPipeline
import argparse
from torchvision import transforms
import torch
import cv2, PIL, glob, random
import numpy as np
from torch.cuda.amp import autocast
from torchvision import transforms
from collections import OrderedDict
from torch import nn
import torch, cv2
import torch.nn.functional as F
from models.unet_dual_encoder import get_unet, Embedding_Adapter
parser = argparse.ArgumentParser()
parser.add_argument("--folder", default='dreampose-1', help="Path to custom pretrained checkpoints folder.",)
parser.add_argument("--pose_folder", default='../UBC_Fashion_Dataset/valid/91iZ9x8NI0S.mp4', help="Path to test frames, poses, and joints.",)
parser.add_argument("--test_poses", default=None, help="Path to test frames, poses, and joints.",)
parser.add_argument("--epoch", type=int, default=44, required=True, help="Pretrained custom model checkpoint epoch number.",)
parser.add_argument("--key_frame_path", default='../UBC_Fashion_Dataset/dreampose/91iZ9x8NI0S.mp4/key_frame.png', help="Path to key frame.",)
parser.add_argument("--pose_path", default='../UBC_Fashion_Dataset/valid/A1F1j+kNaDS.mp4/85_to_95_to_116/skeleton_i.npy', help="Pretrained model checkpoint step number.",)
parser.add_argument("--strength", type=float, default=1.0, required=False, help="How much noise to add to input image.",)
parser.add_argument("--s1", type=float, default=0.5, required=False, help="Classifier free guidance of input image.",)
parser.add_argument("--s2", type=float, default=0.5, required=False, help="Classifier free guidance of input pose.",)
parser.add_argument("--iters", default=1, type=int, help="# times to do stochastic sampling for all frames.")
parser.add_argument("--sampler", default='PNDM', help="PNDM or DDIM.")
parser.add_argument("--n_steps", default=100, type=int, help="Number of denoising steps.")
parser.add_argument("--output_dir", default=None, help="Where to save results.")
parser.add_argument("--j", type=int, default=-1, required=False, help="Specific frame number.",)
parser.add_argument("--min_j", type=int, default=0, required=False, help="Lowest predicted frame id.",)
parser.add_argument("--max_j", type=int, default=-1, required=False, help="Max predicted frame id.",)
parser.add_argument("--custom_vae", default=None, help="Path use custom VAE checkpoint.")
parser.add_argument("--batch_size", type=int, default=1, required=False, help="# frames to infer at once.",)
args = parser.parse_args()
save_folder = args.output_dir if args.output_dir is not None else args.folder #'results-fashion/'
if not os.path.exists(save_folder):
os.mkdir(save_folder)
# Load custom model
model_id = f"{args.folder}/checkpoint-{args.epoch}" #if args.step > 0 else "CompVis/stable-diffusion-v1-4"
device = "cuda"
# Load UNet
unet = get_unet('CompVis/stable-diffusion-v1-4', "ebb811dd71cdc38a204ecbdd6ac5d580f529fd8c", resolution=512)
unet_path = f"{args.folder}/unet_epoch_{args.epoch}.pth"
print("Loading ", unet_path)
unet_state_dict = torch.load(unet_path)
new_state_dict = OrderedDict()
for k, v in unet_state_dict.items():
name = k.replace('module.', '') #k[7:] if k[:7] == 'module' else k
new_state_dict[name] = v
unet.load_state_dict(new_state_dict)
unet = unet.cuda()
print("Loading custom model from: ", model_id)
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(model_id, unet=unet, torch_dtype=torch.float16, revision="fp16")
pipe.safety_checker = lambda images, clip_input: (images, False) # disable safety check
#pipe.unet.load_state_dict(torch.load(f'{save_folder}/unet_epoch_{args.epoch}.pth')) #'results/epoch_1/unet.pth'))
#pipe.unet = pipe.unet.cuda()
adapter_chkpt = f'{args.folder}/adapter_{args.epoch}.pth'
print("Loading ", adapter_chkpt)
adapter_state_dict = torch.load(adapter_chkpt)
new_state_dict = OrderedDict()
for k, v in adapter_state_dict.items():
name = k.replace('module.', '') #name = k[7:] if k[:7] == 'module' else k
new_state_dict[name] = v
print(pipe.adapter.linear1.weight)
pipe.adapter = Embedding_Adapter()
pipe.adapter.load_state_dict(new_state_dict)
print(pipe.adapter.linear1.weight)
pipe.adapter = pipe.adapter.cuda()
if args.custom_vae is not None:
vae_chkpt = args.custom_vae
print("Loading custom vae checkpoint from ", vae_chkpt, '...')
vae_state_dict = torch.load(vae_chkpt)
new_state_dict = OrderedDict()
for k, v in vae_state_dict.items():
name = k.replace('module.', '') #name = k[7:] if k[:7] == 'module' else k
new_state_dict[name] = v
pipe.vae.load_state_dict(new_state_dict)
pipe.vae = pipe.vae.cuda()
# Change scheduler
if args.sampler == 'DDIM':
print("Default scheduler = ", pipe.scheduler)
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
print("New scheduler = ", pipe.scheduler)
def visualize_dp(im, dp):
#im = im.transpose((2, 0, 1))
print(im.shape, dp.shape)
hsv = np.zeros(im.shape, dtype=np.uint8)
hsv[..., 1] = 255
dp = dp.cpu().detach().numpy()
mag, ang = cv2.cartToPolar(dp[0], dp[1])
hsv[..., 0] = ang * 180 / np.pi / 2
hsv[..., 2] = cv2.normalize(mag, None, 0, 255, cv2.NORM_MINMAX)
bgr = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
return bgr
n_images_per_sample = 1
frame_numbers = sorted([int(path.split('frame_')[-1].replace('_densepose.npy', '')) for path in glob.glob(f'{args.pose_folder}/frame_*.npy')])
frame_numbers = list(set(frame_numbers))
pose_paths = [f'{args.pose_folder}/frame_{num}_densepose.npy' for num in frame_numbers]
if args.max_j > -1:
pose_paths = pose_paths[args.min_j:args.max_j]
else:
pose_paths = pose_paths[args.min_j:]
imSize = (512, 640)
image_transforms = transforms.Compose(
[
transforms.Resize(imSize, interpolation=transforms.InterpolationMode.BILINEAR),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
tensor_transforms = transforms.Compose(
[
transforms.Normalize([0.5], [0.5]),
]
)
# Load key frame
input_image = PIL.Image.open(args.key_frame_path).resize(imSize)
if args.j >= 0:
j = args.j
pose_paths = pose_paths[j:j+1]
# Iterate samples
prev_image = input_image
for i, pose_path in enumerate(pose_paths):
frame_number = int(frame_numbers[i])
h, w = imSize[1], imSize[0]
# construct 5 input poses
poses = []
for pose_number in range(frame_number-2, frame_number+3):
dp_path = pose_path.replace(str(frame_number), str(pose_number))
if not os.path.exists(dp_path):
dp_path = pose_path
print(dp_path)
dp_i = F.interpolate(torch.from_numpy(np.load(dp_path).astype('float32')).unsqueeze(0), (h, w), mode='bilinear').squeeze(0)
poses.append(tensor_transforms(dp_i))
input_pose = torch.cat(poses, 0).unsqueeze(0)
print(pose_path.split('_'))
j = int(pose_path.split('_')[-2])
print("j = ", j)
with autocast():
image = pipe(prompt="",
image=input_image,
pose=input_pose,
strength=1.0,
num_inference_steps=args.n_steps,
guidance_scale=7.5,
s1=args.s1,
s2=args.s2,
callback_steps=1,
frames=[]
)[0][0]
# Save pose and image
save_path = f"{save_folder}/pred_#{j}.png"
image = image.convert('RGB')
image = np.array(image)
image = image - np.min(image)
image = (255*(image / np.max(image))).astype(np.uint8)
cv2.imwrite(save_path, cv2.cvtColor(image, cv2.COLOR_BGR2RGB))