@@ -27,7 +27,7 @@ vtufile = vtuIO.VTUIO("examples/square_1e2_pcs_0_ts_1_t_1.000000.vtu", dim=2)
27
27
28
28
29
29
30
- PyObject <vtuIO.VTUIO object at 0x7f389fd3a760 >
30
+ PyObject <vtuIO.VTUIO object at 0x7fe66e250760 >
31
31
32
32
33
33
@@ -36,7 +36,7 @@ Basic VTU properties, like fieldnames, points and corresponding fielddata as pro
36
36
37
37
38
38
``` julia
39
- fields= vtufile. getFieldnames ()
39
+ fields= vtufile. get_field_names ()
40
40
```
41
41
42
42
@@ -67,7 +67,7 @@ vtufile.points[1:3]
67
67
68
68
69
69
``` julia
70
- vtufile. getField (" v" )
70
+ vtufile. get_field (" v" )
71
71
```
72
72
73
73
@@ -123,7 +123,7 @@ can be retrieved via
123
123
124
124
125
125
``` julia
126
- point_data = vtufile. getPointData (" pressure" , pts= points)
126
+ point_data = vtufile. get_point_data (" pressure" , pts= points)
127
127
```
128
128
129
129
@@ -150,13 +150,13 @@ vtufile = vtuIO.VTUIO("examples/square2d_random.vtu", dim=2)
150
150
151
151
152
152
153
- PyObject <vtuIO.VTUIO object at 0x7f3848298fd0 >
153
+ PyObject <vtuIO.VTUIO object at 0x7fe65b8f20d0 >
154
154
155
155
156
156
157
157
158
158
``` julia
159
- field = vtufile. getField (" gaussian_field_2" );
159
+ field = vtufile. get_field (" gaussian_field_2" );
160
160
```
161
161
162
162
@@ -167,7 +167,7 @@ triang = matplotlib.tri.Triangulation(vtufile.points[:,1], vtufile.points[:,2])
167
167
168
168
169
169
170
- PyObject <matplotlib.tri.triangulation.Triangulation object at 0x7f3848298850 >
170
+ PyObject <matplotlib.tri.triangulation.Triangulation object at 0x7fe61648f370 >
171
171
172
172
173
173
@@ -185,7 +185,7 @@ tricontourf(triang,field)
185
185
186
186
187
187
188
- PyObject <matplotlib.tri.tricontour.TriContourSet object at 0x7f389ed33460 >
188
+ PyObject <matplotlib.tri.tricontour.TriContourSet object at 0x7fe6142ed640 >
189
189
190
190
191
191
@@ -210,7 +210,7 @@ diagonal = [(i,i,0) for i in 0:0.1:64];
210
210
vtufile = vtuIO. VTUIO (" examples/square2d_random.vtu" , dim= 2 )
211
211
data_diag = Dict ()
212
212
for method in methods
213
- data_diag[method] = vtufile. getPointSetData (" gaussian_field_2" , pointsetarray= diagonal, interpolation_method= method)
213
+ data_diag[method] = vtufile. get_point_set_data (" gaussian_field_2" , pointsetarray= diagonal, interpolation_method= method)
214
214
end
215
215
```
216
216
@@ -236,7 +236,7 @@ legend()
236
236
237
237
238
238
239
- PyObject <matplotlib.legend.Legend object at 0x7f389ffe8a90 >
239
+ PyObject <matplotlib.legend.Legend object at 0x7fe66e381880 >
240
240
241
241
242
242
@@ -251,13 +251,13 @@ vtufile = vtuIO.VTUIO("examples/square_1e2_pcs_0_ts_1_t_1.000000.vtu", dim=2)
251
251
252
252
253
253
254
- PyObject <vtuIO.VTUIO object at 0x7f384c2a0070 >
254
+ PyObject <vtuIO.VTUIO object at 0x7fe66e3b7760 >
255
255
256
256
257
257
258
258
259
259
``` julia
260
- p_size = length (vtufile. getField (" pressure" ))
260
+ p_size = length (vtufile. get_field (" pressure" ))
261
261
```
262
262
263
263
@@ -274,7 +274,7 @@ p0 = ones(p_size) * 1e6;
274
274
275
275
276
276
``` julia
277
- vtufile. writeField (p0, " initialPressure" , " mesh_initialpressure.vtu" )
277
+ vtufile. write_field (p0, " initialPressure" , " mesh_initialpressure.vtu" )
278
278
```
279
279
280
280
A new field can also created from a three-argument function for all space-dimensions:
299
299
300
300
301
301
``` julia
302
- vtufile. func2Field (p_init, " p_init" , " mesh_initialpressure.vtu" )
302
+ vtufile. func_to_field (p_init, " p_init" , " mesh_initialpressure.vtu" )
303
303
```
304
304
305
305
It is also possible to write multidimensional arrays using a function.
320
320
321
321
322
322
``` julia
323
- vtufile. func2MdimField ([p_init,p_init,null,null], " sigma00" ," mesh_initialpressure.vtu" )
323
+ vtufile. func_to_m_dim_field ([p_init,p_init,null,null], " sigma00" ," mesh_initialpressure.vtu" )
324
324
```
325
325
326
326
# 3. Reading time-series data from PVD files:
@@ -335,7 +335,7 @@ pvdfile = vtuIO.PVDIO("examples", "square_1e2_pcs_0.pvd", dim=2)
335
335
336
336
337
337
338
- PyObject <vtuIO.PVDIO object at 0x7f389ff4cf70 >
338
+ PyObject <vtuIO.PVDIO object at 0x7fe66e3c9b50 >
339
339
340
340
341
341
@@ -371,7 +371,7 @@ points = Dict("pt0"=> (0.3,0.5,0.0), "pt1"=> (0.24,0.21,0.0))
371
371
372
372
373
373
``` julia
374
- pressure_linear = pvdfile. readTimeSeries (" pressure" , points)
374
+ pressure_linear = pvdfile. read_time_series (" pressure" , points)
375
375
```
376
376
377
377
@@ -385,7 +385,7 @@ pressure_linear = pvdfile.readTimeSeries("pressure", points)
385
385
386
386
387
387
``` julia
388
- pressure_nearest = pvdfile. readTimeSeries (" pressure" , points, interpolation_method= " nearest" )
388
+ pressure_nearest = pvdfile. read_time_series (" pressure" , points, interpolation_method= " nearest" )
389
389
```
390
390
391
391
@@ -402,9 +402,6 @@ pressure_nearest = pvdfile.readTimeSeries("pressure", points, interpolation_meth
402
402
using Plots
403
403
```
404
404
405
- WARNING: using Plots.plot in module Main conflicts with an existing identifier.
406
-
407
-
408
405
As point pt0 is a node in the mesh, both values at $t=1$ agree, whereas pt1 is not a mesh node point resulting in different values.
409
406
410
407
@@ -458,10 +455,10 @@ t2 = 0.9
458
455
459
456
460
457
``` julia
461
- pressure_xaxis_t1 = pvdfile. readPointSetData (t1, " pressure" , pointsetarray= xaxis);
462
- pressure_diagonal_t1 = pvdfile. readPointSetData (t1, " pressure" , pointsetarray= diagonal);
463
- pressure_xaxis_t2 = pvdfile. readPointSetData (t2, " pressure" , pointsetarray= xaxis);
464
- pressure_diagonal_t2 = pvdfile. readPointSetData (t2, " pressure" , pointsetarray= diagonal);
458
+ pressure_xaxis_t1 = pvdfile. read_point_set_data (t1, " pressure" , pointsetarray= xaxis);
459
+ pressure_diagonal_t1 = pvdfile. read_point_set_data (t1, " pressure" , pointsetarray= diagonal);
460
+ pressure_xaxis_t2 = pvdfile. read_point_set_data (t2, " pressure" , pointsetarray= xaxis);
461
+ pressure_diagonal_t2 = pvdfile. read_point_set_data (t2, " pressure" , pointsetarray= diagonal);
465
462
```
466
463
467
464
@@ -494,7 +491,7 @@ legend()
494
491
495
492
496
493
497
- PyObject <matplotlib.legend.Legend object at 0x7f382f4ec520 >
494
+ PyObject <matplotlib.legend.Legend object at 0x7fe600cb4100 >
498
495
499
496
500
497
0 commit comments