-
-
Notifications
You must be signed in to change notification settings - Fork 48
/
Copy pathTest.py
63 lines (49 loc) · 1.84 KB
/
Test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import numpy as np
import cv2 as cv
import time
# OpenCV Facial Capture Test
landmark_model_path = "C:\\Users\\Joe\\Documents\\AnimationUsingPython\\data\\lbfmodel.yaml"
_cap = cv.VideoCapture(0)
_cap.set(cv.CAP_PROP_FRAME_WIDTH, 512)
_cap.set(cv.CAP_PROP_FRAME_HEIGHT, 512)
_cap.set(cv.CAP_PROP_BUFFERSIZE, 1)
time.sleep(0.5)
facemark = cv.face.createFacemarkLBF()
# error detection
try:
# Download the trained model lbfmodel.yaml:
# https://github.com/kurnianggoro/GSOC2017/tree/master/data
# and update this path to the file:
facemark.loadModel(landmark_model_path)
except cv.error:
print("Model not found")
cascade = cv.CascadeClassifier(cv.data.haarcascades + "haarcascade_frontalface_alt.xml")
if cascade.empty() :
print("cascade not found")
exit()
print("Press ESC to stop")
# finite loop
while True:
_, frame = _cap.read()
faces = cascade.detectMultiScale(frame, 1.05, 6, cv.CASCADE_SCALE_IMAGE, (130, 130))
#find biggest face, and only keep it
if(type(faces) is np.ndarray and faces.size > 0):
biggestFace = np.zeros(shape=(1,4))
for face in faces:
if face[2] > biggestFace[0][2]:
biggestFace[0] = face
# find landmarks
ok, landmarks = facemark.fit(frame, faces=biggestFace)
# draw landmarks
for marks in landmarks:
for (x, y) in marks[0]:
cv.circle(frame, (x, y), 2, (0, 255, 255), -1)
# draw detected face
for (x,y,w,h) in faces:
cv.rectangle(frame, (x,y), (x+w,y+h), (255,0,0), 1)
for i,(x,y,w,h) in enumerate(faces):
cv.putText(frame, "Face #{}".format(i), (x - 10, y - 10),
cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 1)
cv.imshow("Image Landmarks", frame)
if(cv.waitKey(1) == 27):
exit()