From 3d09efde2d1842ede9b50466b2c0e3a6d805d46e Mon Sep 17 00:00:00 2001 From: Jan Midtgaard Date: Mon, 25 Aug 2014 21:02:41 +0200 Subject: [PATCH] Fix markdown indentation, again --- README.md | 54 +++++++++++++++++++++++++++--------------------------- 1 file changed, 27 insertions(+), 27 deletions(-) diff --git a/README.md b/README.md index bce8cdf..18212af 100644 --- a/README.md +++ b/README.md @@ -131,23 +131,23 @@ syntax approaching math-mode signatures. We illustrate both below. - The signature DSL is defined by the following BNF: - baseprop ::= modname -<-> modname (monotonicity) - | modname -$-> modname (strictness) - | modname -~-> modname (invariance) + baseprop ::= modname -<-> modname (monotonicity) + | modname -$-> modname (strictness) + | modname -~-> modname (invariance) - prop ::= '(testsig' (modname '--->')* baseprop ('--->' modname)*) ')' 'for_op' + prop ::= '(testsig' (modname '--->')* baseprop ('--->' modname)*) ')' 'for_op' For example, - (testsig (module L) -<-> (module L)) for_op + (testsig (module L) -<-> (module L)) for_op specifies monotonicity of a function from L to L. For a more advanced example, - (testsig (module L) ---> (module L) -<-> (module L) ---> (module L) ---> (module L)) for_op + (testsig (module L) ---> (module L) -<-> (module L) ---> (module L) ---> (module L)) for_op specifies monotonicity in the second argument of a function with signature L -> L -> L -> L -> L. @@ -164,43 +164,43 @@ syntax approaching math-mode signatures. We illustrate both below. - The combinator DSL is defined by the following BNF: - modname ::= '(module' NAME ')' - - baseprop ::= op_monotone - | op_strict - | op_invariant - - rightprop ::= baseprop - | pw_right modname '(' rightprop ')' - - leftprop ::= rightprop - | pw_left modname '(' leftprop ')' - - prop ::= 'finalize (' leftprop modname modname ')' + modname ::= '(module' NAME ')' + + baseprop ::= op_monotone + | op_strict + | op_invariant + + rightprop ::= baseprop + | pw_right modname '(' rightprop ')' + + leftprop ::= rightprop + | pw_left modname '(' leftprop ')' + + prop ::= 'finalize (' leftprop modname modname ')' Argument modules to pw_left and pw_right has to match the following signature (an element type, a generator, and a string coercion function): - module type ARB_ARG = - sig - type elem - val arb_elem : elem Arbitrary.t - val to_string : elem -> string - end + module type ARB_ARG = + sig + type elem + val arb_elem : elem Arbitrary.t + val to_string : elem -> string + end Revising the example above, - finalize (op_monotone (module L) (module L)) + finalize (op_monotone (module L) (module L)) specifies monotonicity of a function from L to L. Revising the more advanced example above, - finalize (pw_left (module L) (pw_right (module L) (pw_right (module L) op_monotone)) (module L) (module L)) + finalize (pw_left (module L) (pw_right (module L) (pw_right (module L) op_monotone)) (module L) (module L)) specifies monotonicity in the second argument of a function with signature L -> L -> L -> L -> L.