This repository has been archived by the owner on Nov 4, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathgss.go
690 lines (546 loc) · 17.8 KB
/
gss.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
package kerb
import (
"crypto/rand"
"crypto/subtle"
"encoding/binary"
"github.com/jmckaskill/asn1"
"io"
"time"
)
// GSS requests are a bit screwy in that they are partially asn1 The format
// is:
//
// [APPLICATION 0] IMPLICIT SEQUENCE {
// mech OBJECT IDENTIFIER
// data of unknown type and may not be asn1
// }
//
// To decode this we manually unpack the outer header, run the mech through
// the asn1 unmarshaller and then return the rest of the data.
type gssRequest struct {
Mechanism asn1.ObjectIdentifier
Data asn1.RawValue
}
var gssRequestParam = "application,tag:0"
func mustEncodeGSSWrapper(oid asn1.ObjectIdentifier, data []byte) []byte {
req := gssRequest{
Mechanism: oid,
Data: asn1.RawValue{FullBytes: data},
}
return mustMarshal(req, gssRequestParam)
}
func mustDecodeGSSWrapper(data []byte) (asn1.ObjectIdentifier, []byte) {
must(len(data) >= 2)
// GSS wrappers are optional, if they are not supplied we assume the data is KRB5
if data[0] != 0x60 {
return gssKrb5Oid, data
}
isz := int(data[1])
data = data[2:]
// Note for the long forms, the data len must be >= 0x80 anyways
must(isz <= len(data))
switch {
case isz == 0x84:
isz = int(data[0])<<24 + int(data[1])<<16 + int(data[2])<<8 + int(data[3])
data = data[4:]
case isz == 0x83:
isz = int(data[0])<<16 + int(data[1])<<8 + int(data[2])
data = data[3:]
case isz == 0x82:
isz = int(data[0])<<8 + int(data[1])
data = data[2:]
case isz == 0x81:
isz = int(data[0])
data = data[1:]
case isz <= 0x7F:
// short length form
default:
panic(ErrProtocol)
}
must(0 <= isz && isz <= len(data))
data = data[:isz]
oid := asn1.ObjectIdentifier{}
data, err := asn1.Unmarshal(data, &oid)
if err != nil {
panic(err)
}
return oid, data
}
type replayKey struct {
keyType int
key string
time time.Time
microseconds int
sequenceNumber uint32
}
// Connect authenticates to a remote service by sending the given ticket.
//
// If SASLAuth is used and a GSS wrapped connection is established, gssrw
// returns a wrapped version of rw that performs the integrity/confidentiality
// wrapping. If no wrapper is negotiated then gssrw is nil.
func (t *Ticket) Connect(rw io.ReadWriter, flags int) (gssrw io.ReadWriter, err error) {
defer recoverMust(&err)
appflags := 0
gssflags := gssIntegrity | gssConfidential
if (flags & MutualAuth) != 0 {
appflags |= mutualAuth
gssflags |= gssMutual
}
if (flags & SASLAuth) != 0 {
// SASL auth requires the AP_REP always
appflags |= mutualAuth
gssflags |= gssMutual
// gssWrapper handles out of order messages but does not keep
// a replay list
gssflags |= gssSequence
}
if (flags & NoConfidentiality) != 0 {
gssflags &^= gssConfidential
}
if (flags & NoSecurity) == 0 {
gssflags &^= gssConfidential | gssIntegrity
}
// See RFC4121 4.1.1 for the GSS fake auth checksum
gsschk := [24]byte{}
// 0..3 Lgth: Number of bytes in Bnd field; Currently contains hex 10
// 00 00 00 (16, represented in little-endian form)
binary.LittleEndian.PutUint32(gsschk[0:4], 16)
// 4..19 Bnd: MD5 hash of channel bindings, taken over all non-null
// components of bindings, in order of declaration. Integer fields
// within channel bindings are represented in little-endian order for
// the purposes of the MD5 calculation; Currently left as 0.
// 20..23 Flags: Bit vector of context-establishment flags, with
// values consistent with RFC-1509, p. 41. The resulting bit vector is
// encoded into bytes 20..23 in little-endian form.
binary.LittleEndian.PutUint32(gsschk[20:24], uint32(gssflags))
// 24..25 DlgOpt The Delegation Option identifier (=1) [optional]
// 26..27 Dlgth: The length of the Deleg field. [optional]
// 28..(n-1) Deleg: A KRB_CRED message (n = Dlgth + 28) [optional]
// n..last Exts: Extensions [optional].
subkey := mustGenerateKey(t.key.EncryptAlgo(appRequestAuthKey), rand.Reader)
now := t.cfg.now().UTC()
auth := authenticator{
ProtoVersion: kerberosVersion,
ClientRealm: t.crealm,
Client: t.client,
Time: time.Unix(now.Unix(), 0).UTC(), // round to the nearest second
Microseconds: now.Nanosecond() / 1000,
Checksum: checksumData{signGssFake, gsschk[:]},
SubKey: encryptionKey{
Algo: subkey.EncryptAlgo(appRequestAuthKey),
Key: subkey.Key(),
},
}
if err := binary.Read(t.cfg.rand(), binary.BigEndian, &auth.SequenceNumber); err != nil {
return nil, err
}
authdata := mustMarshal(auth, authenticatorParam)
req := appRequest{
ProtoVersion: kerberosVersion,
MsgType: appRequestType,
Flags: flagsToBitString(appflags),
Ticket: asn1.RawValue{FullBytes: t.ticket},
Auth: encryptedData{
Algo: t.key.EncryptAlgo(appRequestAuthKey),
Data: t.key.Encrypt(nil, appRequestAuthKey, authdata),
},
}
reqdata := mustMarshal(req, appRequestParam)
reqdata = append([]byte{(gssAppRequest >> 8) & 0xFF, gssAppRequest & 0xFF}, reqdata...)
gssdata := mustEncodeGSSWrapper(gssKrb5Oid, reqdata)
mustWrite(rw, gssdata)
// Now get the reply
if (appflags & mutualAuth) == 0 {
return nil, nil
}
brep := [4096]byte{}
repdata := mustRead(rw, brep[:])
oid, repdata := mustDecodeGSSWrapper(repdata)
must(oid.Equal(gssKrb5Oid) && len(repdata) >= 2)
gsstype := binary.BigEndian.Uint16(repdata[:2])
switch gsstype {
case gssAppError:
errmsg := errorMessage{}
mustUnmarshal(repdata[2:], &errmsg, errorParam)
return nil, ErrRemote{&errmsg}
case gssAppReply:
// continue below
default:
panic(ErrProtocol)
}
rep := appReply{}
mustUnmarshal(repdata[2:], &rep, appReplyParam)
must(rep.ProtoVersion == kerberosVersion && rep.MsgType == appReplyType)
erep := encryptedAppReply{}
edata := mustDecrypt(t.key, nil, rep.Encrypted.Algo, appReplyEncryptedKey, rep.Encrypted.Data)
mustUnmarshal(edata, &erep, encAppReplyParam)
must(erep.ClientTime.Equal(auth.Time) && erep.ClientMicroseconds == auth.Microseconds)
// Now non-SASL requests eg HTTP negotiate are finished.
if (flags & SASLAuth) == 0 {
return nil, nil
}
key := t.key
if erep.SubKey.Algo != 0 {
key = mustLoadKey(erep.SubKey.Algo, erep.SubKey.Key)
}
// SASL requests on the otherhand GSS_wrap all messages from now on.
// We return a read writer for the user to be able to do this. However
// we first exchange an intial gss_wrap exchange where we each
// specific the sasl flags as well as the max wrap size. The server
// starts this exchange. Both of these intial messages are not encrypted.
g := &gssWrapper{
// add some extra room for GSS_wrap header and GSS fake ASN1 wrapper
rxbuf: make([]byte, maxGSSWrapRead+64),
rxseqnum: erep.SequenceNumber,
txseqnum: auth.SequenceNumber,
checkseq: (gssflags & gssSequence) != 0,
key: key,
client: true,
conf: false,
rw: rw,
}
repdata = mustRead(g, brep[:])
must(len(repdata) == 4)
availsec := int(repdata[0])
g.maxtxsize = int(binary.BigEndian.Uint32(repdata) & 0xFFFFFF)
sec := chooseGSSSecurity(availsec, flags)
must(sec != 0)
grep := [4]byte{}
binary.BigEndian.PutUint32(grep[:], maxGSSWrapRead)
grep[0] = byte(sec)
mustWrite(g, grep[:])
if sec == saslNoSecurity {
return nil, nil
}
g.conf = (sec == saslConfidential)
return g, nil
}
type gssWrapper struct {
rxbuf []byte
rxseqnum, txseqnum uint32
checkseq bool
maxtxsize int
key key
client, conf bool
rw io.ReadWriter
}
func direction(senderIsInitiator bool) uint32 {
if senderIsInitiator {
return 0
}
return 0xFFFFFFFF
}
func (s *gssWrapper) Read(b []byte) (n int, err error) {
defer recoverMust(&err)
dir := direction(!s.client)
data := mustRead(s.rw, s.rxbuf)
seqnum, gdata := mustGSSUnwrap(data, s.key, dir, s.conf)
if s.checkseq {
must(seqnum == s.rxseqnum)
s.rxseqnum++
}
return copy(b, gdata), nil
}
func (s *gssWrapper) Write(b []byte) (n int, err error) {
defer recoverMust(&err)
for n = 0; n < len(b); n += s.maxtxsize {
d := b[n:]
if len(d) > s.maxtxsize {
d = d[:s.maxtxsize]
}
dir := direction(s.client)
gdata := mustGSSWrap(s.txseqnum, d, s.key, dir, s.conf)
mustWrite(s.rw, gdata)
s.txseqnum++
}
return len(b), nil
}
func chooseGSSSecurity(avail, flags int) int {
rconf := (flags & RequireConfidentiality) != 0
rint := (flags & RequireIntegrity) != 0
tconf := (flags & (NoConfidentiality | NoSecurity)) == 0
tint := (flags & NoSecurity) == 0
aconf := (avail & saslConfidential) != 0
aint := (avail & saslIntegrity) != 0
anone := (avail & saslNoSecurity) != 0
if (rconf || tconf) && aconf {
return saslConfidential
} else if rconf {
return 0
}
if (rint || tint) && aint {
return saslIntegrity
} else if rint {
return 0
}
if anone {
return saslNoSecurity
}
return 0
}
// See RFC1964 1.2.2
func mustGSSUnwrap(gdata []byte, key key, dir uint32, conf bool) (seqnum uint32, data []byte) {
must(len(gdata) >= 2)
oid, idata := mustDecodeGSSWrapper(gdata)
must(oid.Equal(gssKrb5Oid) && len(idata) >= 32)
tok := int(binary.BigEndian.Uint16(idata[0:2]))
signalg := int(binary.BigEndian.Uint16(idata[2:4]))
sealalg := int(binary.BigEndian.Uint16(idata[4:6]))
// filler for 6:8
seqdata := idata[8:16]
chk := idata[16:24]
data = idata[24:]
must(tok == gssWrap)
must((sealalg != cryptGssNone) == conf)
// checksum salt
seqdata = mustDecrypt(key, chk, sealalg, gssSequenceNumber, seqdata)
if conf {
// sequence number salt
data = mustDecrypt(key, seqdata[:4], sealalg, gssWrapSeal, data)
}
chk2 := mustSign(key, signalg, gssWrapSign, idata[:8], data)
must(subtle.ConstantTimeCompare(chk, chk2[:8]) == 1)
must(dir == binary.BigEndian.Uint32(seqdata[4:8]))
// The first 8 bytes of the data is the confounder.
// The trailing [1:8] pad bytes all have the padding size as the value
padsz := int(data[len(data)-1])
must(8+padsz < len(data))
data = data[8 : len(data)-padsz]
return binary.BigEndian.Uint32(seqdata), data
}
// See RFC1964 1.2.2
func mustGSSWrap(seqnum uint32, data []byte, key key, dir uint32, conf bool) []byte {
signalgo := key.SignAlgo(gssWrapSign)
sealalgo := key.EncryptAlgo(gssWrapSeal)
if !conf {
sealalgo = cryptGssNone
}
d := make([]byte, 32)
binary.BigEndian.PutUint16(d[0:2], gssWrap)
binary.BigEndian.PutUint16(d[2:4], uint16(signalgo))
binary.BigEndian.PutUint16(d[4:6], uint16(sealalgo))
binary.BigEndian.PutUint16(d[6:8], 0xFFFF) // filler
// 8:16 is encrypted sequence number
// 16:24 is checksum below
binary.BigEndian.PutUint32(d[8:12], seqnum)
binary.BigEndian.PutUint32(d[12:16], dir)
// 24:32 is the confounder
mustReadFull(rand.Reader, d[24:32])
d = append(d, data...)
// 8 byte round padding must be at least one byte
padsz := ((len(d) + 8) &^ 7) - len(d)
// RFC4757 (MS RC4-HMAC) violates the standard padding and wants
// explicitely only one byte
if key.EncryptAlgo(gssSequenceNumber) == cryptGssRc4Hmac {
padsz = 1
}
for i := 0; i < padsz; i++ {
d = append(d, byte(padsz))
}
// Checksum the 8 byte header, 8 byte confounder, data, and padding
copy(d[16:24], mustSign(key, signalgo, gssWrapSign, d[:8], d[24:]))
if conf {
// encrypt data using sequence number salt
copy(d[24:], key.Encrypt(d[8:12], gssWrapSeal, d[24:]))
}
// encrypt seqnum using checksum salt
copy(d[8:16], key.Encrypt(d[16:24], gssSequenceNumber, d[8:16]))
return mustEncodeGSSWrapper(gssKrb5Oid, d)
}
func (c *Credential) isReplay(auth *authenticator, etkt *encryptedTicket) bool {
now := c.cfg.now().UTC()
c.lk.Lock()
defer c.lk.Unlock()
rkey := replayKey{
keyType: etkt.Key.Algo,
key: string(etkt.Key.Key),
time: auth.Time,
microseconds: auth.Microseconds,
sequenceNumber: auth.SequenceNumber,
}
if c.replay == nil {
c.replay = make(map[replayKey]bool)
c.lastReplayPurge = now
}
if _, ok := c.replay[rkey]; ok {
return true
}
if now.Sub(c.lastReplayPurge) > time.Minute*10 {
for rkey := range c.replay {
if now.Sub(rkey.time) > time.Minute*10 {
delete(c.replay, rkey)
}
}
c.lastReplayPurge = now
}
c.replay[rkey] = true
return false
}
// Accept reads in a connect request checking that it is valid for the given
// credential.
//
// If SASLAuth is requested and a GSS wrapped connection is negotiated for
// integrity/confidentiality then gssrw returns a wrapped version of rw which
// performs the wrapping.
//
// Accept also returns the user and realm that the client authenticated with
// if successful.
func (c *Credential) Accept(rw io.ReadWriter, flags int) (gssrw io.ReadWriter, user, realm string, err error) {
// TODO send error replies
defer recoverMust(&err)
// Get the AP_REQ
breq := [4096]byte{}
reqdata := mustRead(rw, breq[:])
oid, reqdata := mustDecodeGSSWrapper(reqdata)
spnego := oid.Equal(gssSpnegoOid)
if spnego {
neg := negTokenInit{}
mustUnmarshal(reqdata, &neg, negTokenInitParam)
oid, reqdata = mustDecodeGSSWrapper(neg.Token)
}
must(oid.Equal(gssKrb5Oid) || oid.Equal(gssMsKrb5Oid))
must(len(reqdata) >= 2 && binary.BigEndian.Uint16(reqdata[:2]) == gssAppRequest)
req := appRequest{}
mustUnmarshal(reqdata[2:], &req, appRequestParam)
must(req.ProtoVersion == kerberosVersion && req.MsgType == appRequestType)
appflags := bitStringToFlags(req.Flags)
// Check the ticket - problems with the ticket generate ErrTicket
// instead of ErrProtocol so that we can log out that the client just
// sent the wrong or an expired ticket (a corrupt ticket still
// generates a ErrProtocol though)
tkt := ticket{}
mustUnmarshal(req.Ticket.FullBytes, &tkt, ticketParam)
must(tkt.ProtoVersion == kerberosVersion)
if tkt.Realm != c.realm || !nameEquals(tkt.Service, c.principal) {
panic(ErrTicket{"wrong service"})
}
if c.kvno != 0 && c.kvno != tkt.Encrypted.KeyVersion {
panic(ErrTicket{"wrong key version"})
}
etkt := encryptedTicket{}
etktdata := mustDecrypt(c.key, nil, tkt.Encrypted.Algo, ticketKey, tkt.Encrypted.Data)
mustUnmarshal(etktdata, &etkt, encTicketParam)
now := c.cfg.now().UTC()
if etkt.From != *new(time.Time) && now.Before(etkt.From.Add(-5*time.Minute)) {
panic(ErrTicket{"not valid yet"})
}
if now.After(etkt.Till.Add(5 * time.Minute)) {
panic(ErrTicket{"expired"})
}
if bitStringToFlags(etkt.Flags)&TicketInvalid != 0 {
panic(ErrTicket{"invalid flag"})
}
tkey := mustLoadKey(etkt.Key.Algo, etkt.Key.Key)
user = composePrincipal(etkt.Client)
realm = etkt.ClientRealm
// Check the authenticator
auth := authenticator{}
authdata := mustDecrypt(tkey, nil, req.Auth.Algo, appRequestAuthKey, req.Auth.Data)
mustUnmarshal(authdata, &auth, authenticatorParam)
must(auth.ProtoVersion == kerberosVersion)
must(auth.ClientRealm == etkt.ClientRealm && nameEquals(auth.Client, etkt.Client))
must(-5*time.Minute < now.Sub(auth.Time) && now.Sub(auth.Time) < 5*time.Minute)
// Check the fake checksum.
// TODO: handle forwarded credentials
must(auth.Checksum.Algo == signGssFake && len(auth.Checksum.Data) >= 4)
bndlen := int(binary.LittleEndian.Uint32(auth.Checksum.Data))
must(0 <= bndlen && bndlen+8 <= len(auth.Checksum.Data))
gssflags := binary.LittleEndian.Uint32(auth.Checksum.Data[bndlen+4:])
must(((gssflags & gssMutual) != 0) == ((appflags & mutualAuth) != 0))
// Now check for replays
must(!c.isReplay(&auth, &etkt))
// Now send the reply
if (appflags & mutualAuth) == 0 {
return nil, user, realm, nil
}
erep := encryptedAppReply{
ClientTime: auth.Time,
ClientMicroseconds: auth.Microseconds,
}
if err := binary.Read(c.cfg.rand(), binary.BigEndian, &erep.SequenceNumber); err != nil {
return nil, "", "", err
}
erepdata := mustMarshal(erep, encAppReplyParam)
rep := appReply{
ProtoVersion: kerberosVersion,
MsgType: appReplyType,
Encrypted: encryptedData{
Algo: tkey.EncryptAlgo(appReplyEncryptedKey),
Data: tkey.Encrypt(nil, appReplyEncryptedKey, erepdata),
},
}
repdata := mustMarshal(rep, appReplyParam)
repdata = append([]byte{(gssAppReply >> 8) & 0xFF, gssAppReply & 0xFF}, repdata...)
repdata = mustEncodeGSSWrapper(oid, repdata)
if spnego {
srep := negTokenReply{
State: spnegoAccepted,
Mechanism: oid,
Response: repdata,
}
repdata = mustMarshal(srep, negTokenReplyParam)
repdata = mustEncodeGSSWrapper(gssSpnegoOid, repdata)
}
mustWrite(rw, repdata)
// Non-SASL accepts eg HTTP negotiate are now finished
if (flags & SASLAuth) == 0 {
return nil, user, realm, nil
}
// SASL accept continues on with sending a GSS_wrapped request from
// the server to the client to negotiate the wrapping security mode.
availsec := saslNoSecurity | saslIntegrity | saslConfidential
// Remove modes we don't support
if (flags & NoConfidentiality) != 0 {
availsec &^= saslConfidential
}
if (flags & NoSecurity) != 0 {
availsec &^= saslIntegrity | saslConfidential
}
// Remove modes where we require a higher level
if (flags & RequireConfidentiality) != 0 {
availsec &^= saslNoSecurity | saslIntegrity
} else if (flags & RequireIntegrity) != 0 {
availsec &^= saslNoSecurity
}
// Remove modes the client doesn't support
if (gssflags & gssIntegrity) == 0 {
availsec &^= saslIntegrity
}
if (gssflags & gssConfidential) == 0 {
availsec &^= saslConfidential
}
if availsec == 0 {
panic(ErrNoCommonAlgorithm)
}
g := &gssWrapper{
// add some extra room for GSS_wrap header and GSS fake ASN1 wrapper
rxbuf: make([]byte, maxGSSWrapRead+64),
rxseqnum: auth.SequenceNumber,
txseqnum: erep.SequenceNumber,
checkseq: (gssflags & gssSequence) != 0,
maxtxsize: maxGSSWrapRead, // fill in properly later
key: tkey,
client: false,
conf: false,
rw: rw,
}
gd := [4]byte{}
binary.BigEndian.PutUint32(gd[:], maxGSSWrapRead)
gd[0] = byte(availsec)
mustWrite(g, gd[:])
repdata = mustRead(g, gd[:])
must(len(repdata) == 4)
g.maxtxsize = int(binary.BigEndian.Uint32(repdata) & 0xFFFFFF)
sec := int(repdata[0])
must((sec & availsec) != 0)
switch sec {
case saslNoSecurity:
g = nil
case saslIntegrity:
case saslConfidential:
g.conf = true
default:
panic(ErrProtocol)
}
return g, user, realm, nil
}