索引编号 | 英文术语 | 中文翻译 | 常用缩写 | 来源&扩展 | 备注 |
---|---|---|---|---|---|
AITD-00610 | F Measure | F值 | [1] | ||
AITD-00611 | F-Score | F分数 | [1] | ||
AITD-00612 | Factor | 因子 | [1] | ||
AITD-00613 | Factor Analysis | 因子分析 | [1] | ||
AITD-00614 | Factor Graph | 因子图 | [1] | ||
AITD-00615 | Factor Loading | 因子负荷量 | [1] | ||
AITD-00616 | Factorization | 因子分解 | [1] | ||
AITD-00617 | Factorized | 分解的 | [1] | ||
AITD-00618 | Factors of Variation | 变差因素 | [1] | ||
AITD-00619 | False Negative | 假负例 | [1] | ||
AITD-00620 | False Positive | 假正例 | [1] | ||
AITD-00621 | False Positive Rate | 假正例率 | FPR | [1] | |
AITD-00622 | Fast Dropout | 快速暂退法 | [1] | ||
AITD-00623 | Fast Persistent Contrastive Divergence | 快速持续性对比散度 | [1] | ||
AITD-00624 | Fault-Tolerant Asynchronous Training | 容错异步训练 | [1] | ||
AITD-00625 | Feasible | 可行 | [1] | ||
AITD-00626 | Feature | 特征 | [1] | ||
AITD-00627 | Feature Engineering | 特征工程 | [1] | ||
AITD-00628 | Feature Extraction | 特征抽取 | [1] | ||
AITD-00629 | Feature Extractor | 特征提取器 | [1] | ||
AITD-00630 | Feature Function | 特征函数 | [1] | ||
AITD-00631 | Feature Map | 特征图 | [1] | ||
AITD-00632 | Feature Scaling Transform | 特征尺度变换 | [1] | ||
AITD-00633 | Feature Selection | 特征选择 | [1][2][3] | ||
AITD-00634 | Feature Space | 特征空间 | [1] | ||
AITD-00635 | Feature Vector | 特征向量 | [1] | ||
AITD-00636 | Featured Learning | 特征学习 | [1] | ||
AITD-00637 | Feedback | 反馈 | [1] | ||
AITD-00638 | Feedforward | 前馈 | [1] | ||
AITD-00639 | Feedforward Classifier | 前馈分类器 | [1] | ||
AITD-00640 | Feedforward Network | 前馈网络 | [1] | ||
AITD-00641 | Feedforward Neural Network | 前馈神经网络 | FNN | [1][2][3] | |
AITD-00642 | Few-Shot Learning | 少试学习 | [1] | ||
AITD-00643 | Fidelity | 逼真度 | [1] | ||
AITD-00644 | Field Programmable Gated Array | 现场可编程门阵列 | [1] | ||
AITD-00645 | Filter | 滤波器 | [1] | ||
AITD-00646 | Filter Method | 过滤式方法 | [1] | ||
AITD-00647 | Fine-Tuning | 微调 | [1] | ||
AITD-00648 | Finite Difference | 有限差分 | [1] | ||
AITD-00649 | First Layer | 第一层 | [1] | ||
AITD-00650 | First-Order Method | 一阶方法 | [1] | ||
AITD-00651 | First-Order Rule | 一阶规则 | [1] | ||
AITD-00652 | Fisher Information Matrix | Fisher信息矩阵 | [1] | ||
AITD-00653 | Fixed Point Equation | 不动点方程 | [1] | ||
AITD-00654 | Fixed-Point Arithmetic | 不动点运算 | [1] | ||
AITD-00655 | Flat Minima | 平坦最小值 | [1] | ||
AITD-00656 | Flip | 翻转 | [1] | ||
AITD-00657 | Flipping Output | 翻转法 | [1] | ||
AITD-00658 | Float-Point Arithmetic | 浮点运算 | [1] | ||
AITD-00659 | Fluctuation | 振荡 | [1] | ||
AITD-00660 | Focus Attention | 聚焦式注意力 | [1] | ||
AITD-00661 | Folk Theorem | 无名氏定理 | [1] | ||
AITD-00662 | Forget Gate | 遗忘门 | [1] | ||
AITD-00663 | Forward | 前向 | [1] | ||
AITD-00664 | Forward KL Divergence | 前向KL散度 | [1] | ||
AITD-00665 | Forward Mode Accumulation | 前向模式累加 | [1] | ||
AITD-00666 | Forward Propagation | 前向传播/正向传播 | [1] | ||
AITD-00667 | Forward Search | 前向搜索 | [1] | ||
AITD-00668 | Forward Stagewise Algorithm | 前向分步算法 | [1] | ||
AITD-00669 | Forward-Backward Algorithm | 前向-后向算法 | [1] | ||
AITD-00670 | Fourier Transform | 傅立叶变换 | [1] | ||
AITD-00671 | Fovea | 中央凹 | [1] | ||
AITD-00672 | Fractionally Strided Convolution | 微步卷积 | [1] | ||
AITD-00673 | Free Energy | 自由能 | [1] | ||
AITD-00674 | Frequentist | 频率主义学派 | [1] | ||
AITD-00675 | Frequentist Probability | 频率派概率 | [1] | ||
AITD-00676 | Frequentist Statistics | 频率派统计 | [1] | ||
AITD-00677 | Frobenius Norm | Frobenius 范数 | [1] | ||
AITD-00678 | Full | 全 | [1] | ||
AITD-00679 | Full Conditional Distribution | 满条件分布 | [1] | ||
AITD-00680 | Full Conditional Probability | 全条件概率 | [1] | ||
AITD-00681 | Full Padding | 全填充 | [1] | ||
AITD-00682 | Full Singular Value Decomposition | 完全奇异值分解 | [1] | ||
AITD-00683 | Full-Rank Matrix | 满秩矩阵 | [1] | ||
AITD-00684 | Fully Connected Layer | 全连接层 | [1] | ||
AITD-00685 | Fully Connected Neural Network | 全连接神经网络 | FCNN | [1] | |
AITD-00686 | Fully Convolutional Network | 全卷积网络 | FCN | [1] | |
AITD-00687 | Function | 函数 | [1] | ||
AITD-00688 | Functional | 泛函 | [1] | ||
AITD-00689 | Functional Derivative | 泛函导数 | [1] | ||
AITD-00690 | Functional Margin | 函数间隔 | [1] | ||
AITD-00691 | Functional Neuron | 功能神经元 | [1] | ||
AITD-02234 | Faber-Christensen-Huang-Lilienfeld | Faber-Christensen-Huang-Lilienfeld | FCHL | [1] | 四个人提出的化学结构量子机器学习方法 |
AITD-02235 | Facial Recognition | 面部识别 | [1] | ||
AITD-02236 | FAIR Data Principles | FAIR数据原则 | [1] | Findability可找寻 Accessibility可访问 Interoperability可交互 Reuse可再用 | |
AITD-02237 | False Negatives | 假阴性 | FNs | [1] | |
AITD-02238 | False Positives | 假阳性 | FPs | [1] | |
AITD-02239 | Fchl Representation | Fchl 表示 | [1] | ||
AITD-02240 | Feature Binarization | 特征二值化 | [1] | ||
AITD-02241 | Feature Transform | 特征变换 | [1] | ||
AITD-02242 | Feature Vectors | 特征向量 | [1] | ||
AITD-02243 | Features | 特征 | [1] | ||
AITD-02244 | Feed Back | 反馈 | [1] | ||
AITD-02245 | Feed-Forward Neural Networks | 前馈神经网络 | FFNN | [1][2][3] | |
AITD-02246 | Feedback Structure | 反馈结构 | [1] | ||
AITD-02247 | Final Evaluation | 最终评估 | [1] | ||
AITD-02248 | Findable, Accessible, Interoperable, Reusable | 可查找、可访问、可互操作、可重用 | FAIR | [1] | |
AITD-02249 | First-Principles | 第一性原理 | [1] | ||
AITD-02250 | Flow Rate | 流速 | [1] | ||
AITD-02251 | Forward Cross-Validation | 前向交叉验证 | [1] | ||
AITD-02252 | Forward Prediction | 前向预测 | [1] | ||
AITD-02253 | Forward Reaction Prediction | 前向反应预测 | [1] | ||
AITD-02254 | Fuzzy Logic | 模糊逻辑 | FL | [1] | |
AITD-02255 | Fuzzy Neural Networks | 模糊神经网络 | FNN | [1] |