|
| 1 | +# SPDX-License-Identifier: Apache-2.0 |
| 2 | +# SPDX-FileCopyrightText: Copyright contributors to the vLLM project |
| 3 | + |
| 4 | +import math |
| 5 | +from typing import Optional |
| 6 | + |
| 7 | +import torch |
| 8 | + |
| 9 | +from tests.v1.attention.utils import (_Backend, create_standard_kv_cache_spec, |
| 10 | + create_vllm_config, |
| 11 | + get_attention_backend) |
| 12 | +from vllm.config import ParallelConfig, SpeculativeConfig |
| 13 | +from vllm.v1.attention.backends.utils import CommonAttentionMetadata |
| 14 | + |
| 15 | + |
| 16 | +class MockAttentionLayer(torch.nn.Module): |
| 17 | + _q_scale = torch.tensor(1.0, dtype=torch.float32, device="cuda") |
| 18 | + _k_scale = torch.tensor(1.0, dtype=torch.float32, device="cuda") |
| 19 | + _v_scale = torch.tensor(1.0, dtype=torch.float32, device="cuda") |
| 20 | + |
| 21 | + def __init__(self): |
| 22 | + super().__init__() |
| 23 | + |
| 24 | + def forward(self, x): |
| 25 | + return x |
| 26 | + |
| 27 | + |
| 28 | +def forward_attention( |
| 29 | + q: torch.Tensor, |
| 30 | + k: torch.Tensor, |
| 31 | + v: torch.Tensor, |
| 32 | + kv_cache: torch.Tensor, |
| 33 | + block_table: torch.Tensor, |
| 34 | + slot_mapping: torch.Tensor, |
| 35 | + seqlen_k: int, |
| 36 | + backend: _Backend, |
| 37 | + spec_token_tree: Optional[str] = None, |
| 38 | + num_spec_tokens: int = 0, |
| 39 | +) -> torch.Tensor: |
| 40 | + batch_size, q_len, num_heads, dim_per_head = q.shape |
| 41 | + num_kv_heads = k.shape[-2] |
| 42 | + # Initialize the query and KV sequence lengths. |
| 43 | + query_start_loc = q_len * torch.arange( |
| 44 | + batch_size + 1, device=q.device, dtype=torch.int32) |
| 45 | + query_lens = torch.diff(query_start_loc) |
| 46 | + seq_lens = torch.full( |
| 47 | + (batch_size, ), |
| 48 | + seqlen_k, |
| 49 | + device=q.device, |
| 50 | + dtype=torch.int32, |
| 51 | + ) |
| 52 | + context_lens = seq_lens - query_lens |
| 53 | + max_query_len = q_len |
| 54 | + num_actual_tokens = query_start_loc[-1] |
| 55 | + |
| 56 | + softmax_scale = q.shape[-1]**(-0.5) |
| 57 | + layer = MockAttentionLayer() |
| 58 | + |
| 59 | + # Build common metadata. |
| 60 | + model_name = "meta-llama/Meta-Llama-3-8B" |
| 61 | + builder_cls, impl_cls = get_attention_backend(backend) |
| 62 | + vllm_config = create_vllm_config(model_name=model_name, |
| 63 | + max_model_len=max(seq_lens)) |
| 64 | + if spec_token_tree is not None: |
| 65 | + # Create speculative config if token tree is specified. |
| 66 | + vllm_config.speculative_config = SpeculativeConfig( |
| 67 | + target_model_config=vllm_config.model_config, |
| 68 | + target_parallel_config=ParallelConfig(), |
| 69 | + model=model_name, |
| 70 | + method="eagle", |
| 71 | + num_speculative_tokens=num_spec_tokens, |
| 72 | + speculative_token_tree=spec_token_tree) |
| 73 | + kv_cache_spec = create_standard_kv_cache_spec(vllm_config) |
| 74 | + builder = builder_cls(kv_cache_spec, [], vllm_config, q.device) |
| 75 | + common_attn_metadata = CommonAttentionMetadata( |
| 76 | + query_start_loc=query_start_loc, |
| 77 | + query_start_loc_cpu=query_start_loc.cpu(), |
| 78 | + seq_lens=seq_lens, |
| 79 | + seq_lens_cpu=seq_lens.cpu(), |
| 80 | + num_computed_tokens_cpu=context_lens.cpu(), |
| 81 | + num_reqs=batch_size, |
| 82 | + num_actual_tokens=num_actual_tokens, |
| 83 | + max_query_len=max_query_len, |
| 84 | + block_table_tensor=block_table, |
| 85 | + slot_mapping=slot_mapping, |
| 86 | + ) |
| 87 | + |
| 88 | + # Build attention metadata. |
| 89 | + attn_metadata = builder.build( |
| 90 | + common_prefix_len=0, |
| 91 | + common_attn_metadata=common_attn_metadata, |
| 92 | + ) |
| 93 | + |
| 94 | + # Initialize the backend implementation. |
| 95 | + instance = impl_cls( |
| 96 | + num_heads=num_heads, |
| 97 | + head_size=dim_per_head, |
| 98 | + scale=softmax_scale, |
| 99 | + num_kv_heads=num_kv_heads, |
| 100 | + alibi_slopes=None, |
| 101 | + sliding_window=None, |
| 102 | + kv_cache_dtype="auto", |
| 103 | + ) |
| 104 | + |
| 105 | + # Run forward pass and return output. |
| 106 | + query = q.view(-1, num_heads, dim_per_head) |
| 107 | + key = k.view(-1, num_kv_heads, dim_per_head) |
| 108 | + value = v.view(-1, num_kv_heads, dim_per_head) |
| 109 | + output = torch.empty_like(query) |
| 110 | + return instance.forward( |
| 111 | + layer=layer, |
| 112 | + query=query, |
| 113 | + key=key, |
| 114 | + value=value, |
| 115 | + kv_cache=kv_cache.clone(), |
| 116 | + attn_metadata=attn_metadata, |
| 117 | + output=output, |
| 118 | + ) |
| 119 | + |
| 120 | + |
| 121 | +def test_tree_attn_correctness() -> None: |
| 122 | + torch.manual_seed(42) |
| 123 | + torch.cuda.manual_seed_all(42) |
| 124 | + |
| 125 | + device = "cuda" |
| 126 | + tree_attn_masks = { |
| 127 | + # Chain. |
| 128 | + "[(0,), (0, 0), (0, 0, 0)]": |
| 129 | + torch.tensor( |
| 130 | + [ |
| 131 | + [1, 0, 0, 0], |
| 132 | + [1, 1, 0, 0], |
| 133 | + [1, 1, 1, 0], |
| 134 | + [1, 1, 1, 1], |
| 135 | + ], |
| 136 | + device=device, |
| 137 | + dtype=torch.int32, |
| 138 | + ), |
| 139 | + # Tree. |
| 140 | + "[(0,), (1,), (0, 0), (0, 1), (1, 0), (1, 1)]": |
| 141 | + torch.tensor( |
| 142 | + [ |
| 143 | + [1, 0, 0, 0, 0, 0, 0], |
| 144 | + [1, 1, 0, 0, 0, 0, 0], |
| 145 | + [1, 0, 1, 0, 0, 0, 0], |
| 146 | + [1, 1, 0, 1, 0, 0, 0], |
| 147 | + [1, 1, 0, 0, 1, 0, 0], |
| 148 | + [1, 0, 1, 0, 0, 1, 0], |
| 149 | + [1, 0, 1, 0, 0, 0, 1], |
| 150 | + ], |
| 151 | + device=device, |
| 152 | + dtype=torch.int32, |
| 153 | + ), |
| 154 | + } |
| 155 | + |
| 156 | + dim_per_head = 128 |
| 157 | + num_kv_heads = 2 |
| 158 | + block_size = 128 |
| 159 | + max_sequence_length = 8192 |
| 160 | + randomize_blocks = True |
| 161 | + for batch_size in [1, 16, 32]: |
| 162 | + for num_heads in [2, 4]: |
| 163 | + for sequence_position in [16, 1024, 2048]: |
| 164 | + for spec_token_tree, tree_attn_mask in tree_attn_masks.items(): |
| 165 | + # Assert that the number of heads is divisible |
| 166 | + # by the number of KV heads. |
| 167 | + assert num_heads % num_kv_heads == 0 |
| 168 | + |
| 169 | + # Initialize q, k, and v. |
| 170 | + tree_size_q = tree_attn_mask.shape[0] |
| 171 | + seqlen_k = sequence_position + tree_size_q |
| 172 | + q = torch.randn( |
| 173 | + (batch_size, tree_size_q, num_heads, dim_per_head), |
| 174 | + device=device, |
| 175 | + dtype=torch.bfloat16, |
| 176 | + ) |
| 177 | + k = torch.randn( |
| 178 | + (batch_size, tree_size_q, num_kv_heads, dim_per_head), |
| 179 | + device=device, |
| 180 | + dtype=torch.bfloat16, |
| 181 | + ) |
| 182 | + v = torch.randn( |
| 183 | + (batch_size, tree_size_q, num_kv_heads, dim_per_head), |
| 184 | + device=device, |
| 185 | + dtype=torch.bfloat16, |
| 186 | + ) |
| 187 | + |
| 188 | + # Setup the block table and KV cache for paged KV. |
| 189 | + assert max_sequence_length % block_size == 0 |
| 190 | + max_blocks_per_batch = max_sequence_length // block_size |
| 191 | + kv_cache = torch.randn( |
| 192 | + ( |
| 193 | + 2, |
| 194 | + batch_size * max_blocks_per_batch, |
| 195 | + block_size, |
| 196 | + num_kv_heads, |
| 197 | + dim_per_head, |
| 198 | + ), |
| 199 | + device=q.device, |
| 200 | + dtype=torch.bfloat16, |
| 201 | + ) |
| 202 | + num_alloc_blocks_per_batch = math.ceil(seqlen_k / |
| 203 | + block_size) |
| 204 | + block_table = torch.zeros( |
| 205 | + (batch_size, max_blocks_per_batch), |
| 206 | + device=q.device, |
| 207 | + dtype=torch.int32, |
| 208 | + ) |
| 209 | + block_ids = torch.arange( |
| 210 | + 0, |
| 211 | + batch_size * num_alloc_blocks_per_batch, |
| 212 | + device=q.device, |
| 213 | + dtype=torch.int32, |
| 214 | + ) |
| 215 | + if randomize_blocks: |
| 216 | + # Randomize the block ids. |
| 217 | + block_ids = block_ids[torch.randperm( |
| 218 | + block_ids.numel())] |
| 219 | + block_table[:, : |
| 220 | + num_alloc_blocks_per_batch] = block_ids.view( |
| 221 | + -1, num_alloc_blocks_per_batch) |
| 222 | + |
| 223 | + # Setup the slot mapping for the input KVs. |
| 224 | + tree_positions = sequence_position + torch.arange( |
| 225 | + 0, |
| 226 | + tree_size_q, |
| 227 | + device=q.device, |
| 228 | + dtype=torch.int64, |
| 229 | + ).repeat(batch_size, 1) |
| 230 | + tree_slot_mapping = _gen_slot_mapping( |
| 231 | + tree_positions, block_table, block_size) |
| 232 | + |
| 233 | + # Compute attention for the tree. |
| 234 | + tree_attn_output = forward_attention( |
| 235 | + q=q, |
| 236 | + k=k, |
| 237 | + v=v, |
| 238 | + kv_cache=kv_cache, |
| 239 | + block_table=block_table, |
| 240 | + slot_mapping=tree_slot_mapping, |
| 241 | + seqlen_k=seqlen_k, |
| 242 | + backend=_Backend.TREE_ATTN, |
| 243 | + spec_token_tree=spec_token_tree, |
| 244 | + num_spec_tokens=tree_size_q - 1, |
| 245 | + ).view(batch_size, -1, num_heads, dim_per_head) |
| 246 | + |
| 247 | + # Verify that the chain attention output for each |
| 248 | + # branch of the tree (computed using FA3) matches |
| 249 | + # the tree attention output. |
| 250 | + for q_index in range(tree_size_q): |
| 251 | + # Get the q, k, and v for the branch. |
| 252 | + branch_mask = tree_attn_mask[q_index, :] |
| 253 | + branch_indices = torch.nonzero(branch_mask, |
| 254 | + as_tuple=True)[0] |
| 255 | + q_len = branch_indices.shape[0] |
| 256 | + q_branch = q[:, branch_indices] |
| 257 | + k_branch = k[:, branch_indices] |
| 258 | + v_branch = v[:, branch_indices] |
| 259 | + |
| 260 | + # Setup slot mapping for the branch. |
| 261 | + branch_positions = sequence_position + torch.arange( |
| 262 | + 0, |
| 263 | + q_len, |
| 264 | + device=q.device, |
| 265 | + dtype=torch.int64, |
| 266 | + ).repeat(batch_size, 1) |
| 267 | + branch_slot_mapping = _gen_slot_mapping( |
| 268 | + branch_positions, block_table, block_size) |
| 269 | + |
| 270 | + # Compute flash attention for the branch. |
| 271 | + flash_attn_output = forward_attention( |
| 272 | + q=q_branch, |
| 273 | + k=k_branch, |
| 274 | + v=v_branch, |
| 275 | + kv_cache=kv_cache, |
| 276 | + block_table=block_table, |
| 277 | + slot_mapping=branch_slot_mapping, |
| 278 | + seqlen_k=sequence_position + q_len, |
| 279 | + backend=_Backend.FLASH_ATTN_VLLM_V1, |
| 280 | + ).view(batch_size, -1, num_heads, dim_per_head) |
| 281 | + |
| 282 | + # Compare the outputs. |
| 283 | + assert torch.allclose( |
| 284 | + tree_attn_output[:, branch_indices], |
| 285 | + flash_attn_output, |
| 286 | + atol=7.81e-3, |
| 287 | + ), (f"outputs are not close for " |
| 288 | + f"batch_size: {batch_size}, " |
| 289 | + f"num_heads: {num_heads}, " |
| 290 | + f"sequence_position: {sequence_position}, " |
| 291 | + f"tree_attn_mask: {tree_attn_mask}, " |
| 292 | + f"q_index: {q_index}.") |
| 293 | + |
| 294 | + |
| 295 | +def _gen_slot_mapping(positions: torch.Tensor, block_table: torch.Tensor, |
| 296 | + block_size: int): |
| 297 | + block_indices = positions // block_size |
| 298 | + blocks = block_table.gather(dim=1, index=block_indices) |
| 299 | + return (blocks * block_size + positions % block_size).view(-1) |
0 commit comments