This repository contains the implementation code for our NeurIPS 2024 paper Decoupled Kullback-Leibler (DKL) Divergence Loss, arXiv.
Method | Model-Teacher | Model-Student | Training Speed | Top-1 Acc(%) | link | log |
---|---|---|---|---|---|---|
ReviewKD | ResNet-34 | ResNet18 | 0.319 s/iter | 71.61 | - | - |
DKD | ResNet-34 | ResNet18 | - | 71.70 | - | - |
IKL-KD | ResNet-34 | ResNet18 | 0.197 s/iter | 71.91 | - | log |
Method | Model-Teacher | Model-Student | Training Speed | Top-1 Acc(%) | link | log |
---|---|---|---|---|---|---|
ReviewKD | ResNet-50 | MobileNet | 0.526 s/iter | 72.56 | - | - |
DKD | ResNet-50 | MobileNet | - | 72.05 | - | - |
IKL-KD | ResNet-50 | MobileNet | 0.252 s/iter | 72.84 | - | log |
Please refer to https://github.com/megvii-research/mdistiller for environment setup. More training scripts will be available.
cd DKL/KD-dkl
bash sh/imagenet_r34_r18_ikl.sh
bash sh/imagenet_r50_mv_ikl.sh
If you have any questions, feel free to contact us through email ([email protected]) or Github issues. Enjoy!
If you find this code or idea useful, please consider citing our related work:
@article{cui2023decoupled,
title={Decoupled Kullback-Leibler Divergence Loss},
author={Cui, Jiequan and Tian, Zhuotao and Zhong, Zhisheng and Qi, Xiaojuan and Yu, Bei and Zhang, Hanwang},
journal={arXiv preprint arXiv:2305.13948},
year={2023}
}
@inproceedings{cui2021learnable,
title={Learnable boundary guided adversarial training},
author={Cui, Jiequan and Liu, Shu and Wang, Liwei and Jia, Jiaya},
booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
pages={15721--15730},
year={2021}
}
@ARTICLE{10130611,
author={Cui, Jiequan and Zhong, Zhisheng and Tian, Zhuotao and Liu, Shu and Yu, Bei and Jia, Jiaya},
journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
title={Generalized Parametric Contrastive Learning},
year={2023},
volume={},
number={},
pages={1-12},
doi={10.1109/TPAMI.2023.3278694}}
@inproceedings{cui2021parametric,
title={Parametric contrastive learning},
author={Cui, Jiequan and Zhong, Zhisheng and Liu, Shu and Yu, Bei and Jia, Jiaya},
booktitle={Proceedings of the IEEE/CVF international conference on computer vision},
pages={715--724},
year={2021}
}