-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathtrain.py
81 lines (49 loc) · 1.91 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import torch
import torch.optim as optim
from data import SMPL_DATA
from model_maxpool import NPT
import utils as utils
import numpy as np
import time
import pymesh
batch_size=8
dataset = SMPL_DATA(train=True, shuffle_point = True)
dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=1)
model=NPT()
model.cuda()
model.apply(utils.weights_init)
lrate=0.00005
optimizer_G = optim.Adam(model.parameters(), lr=lrate)
for epoch in range(1000):
start=time.time()
total_loss=0
for j,data in enumerate(dataloader,0):
optimizer_G.zero_grad()
pose_points, random_sample, gt_points, identity_points, new_face=data
pose_points=pose_points.transpose(2,1)
pose_points=pose_points.cuda()
identity_points=identity_points.transpose(2,1)
identity_points=identity_points.cuda()
gt_points=gt_points.cuda()
pointsReconstructed = model(pose_points,identity_points)
rec_loss = torch.mean((pointsReconstructed - gt_points)**2)
edg_loss=0
for i in range(len(random_sample)):
f=new_face[i].cpu().numpy()
v=identity_points[i].transpose(0,1).cpu().numpy()
edg_loss=edg_loss+utils.compute_score(pointsReconstructed[i].unsqueeze(0),f,utils.get_target(v,f,1))
edg_loss=edg_loss/len(random_sample)
l2_loss=rec_loss
rec_loss=rec_loss+0.0005*edg_loss
rec_loss.backward()
optimizer_G.step()
total_loss=total_loss+rec_loss
print('####################################')
print(epoch)
print(time.time()-start)
mean_loss=total_loss/(j+1)
print('mean_loss',mean_loss.item())
print('####################################')
if (epoch+1)%10==0:
save_path='./saved_model/'+str(epoch)+'.model'
torch.save(model.state_dict(),save_path)