|
80 | 80 | ########################################################################################################################
|
81 | 81 | cfg.model.loss = CN()
|
82 | 82 | #
|
83 |
| -cfg.model.loss.num_scales = 4 # Number of inverse depth scales to use |
84 |
| -cfg.model.loss.progressive_scaling = 0.0 # Training percentage to decay number of scales |
85 |
| -cfg.model.loss.flip_lr_prob = 0.5 # Probablity of horizontal flippping |
86 |
| -cfg.model.loss.rotation_mode = 'euler' # Rotation mode |
87 |
| -cfg.model.loss.upsample_depth_maps = True # Resize depth maps to highest resolution |
| 83 | +cfg.model.loss.num_scales = 4 # Number of inverse depth scales to use |
| 84 | +cfg.model.loss.progressive_scaling = 0.0 # Training percentage to decay number of scales |
| 85 | +cfg.model.loss.flip_lr_prob = 0.5 # Probablity of horizontal flippping |
| 86 | +cfg.model.loss.rotation_mode = 'euler' # Rotation mode |
| 87 | +cfg.model.loss.upsample_depth_maps = True # Resize depth maps to highest resolution |
88 | 88 | #
|
89 | 89 | cfg.model.loss.ssim_loss_weight = 0.85 # SSIM loss weight
|
90 | 90 | cfg.model.loss.occ_reg_weight = 0.1 # Occlusion regularizer loss weight
|
|
97 | 97 | cfg.model.loss.padding_mode = 'zeros' # Photometric loss padding mode
|
98 | 98 | cfg.model.loss.automask_loss = True # Automasking to remove static pixels
|
99 | 99 | #
|
| 100 | +cfg.model.loss.velocity_loss_weight = 0.1 # Velocity supervision loss weight |
| 101 | +# |
100 | 102 | cfg.model.loss.supervised_method = 'sparse-l1' # Method for depth supervision
|
101 | 103 | cfg.model.loss.supervised_num_scales = 4 # Number of scales for supervised learning
|
102 | 104 | cfg.model.loss.supervised_loss_weight = 0.9 # Supervised loss weight
|
|
138 | 140 | cfg.datasets.train.path = [] # Training data path
|
139 | 141 | cfg.datasets.train.split = [] # Training split
|
140 | 142 | cfg.datasets.train.depth_type = [''] # Training depth type
|
141 |
| -cfg.datasets.train.cameras = [] # Training cameras |
| 143 | +cfg.datasets.train.cameras = [[]] # Training cameras (double list, one for each dataset) |
142 | 144 | cfg.datasets.train.repeat = [1] # Number of times training dataset is repeated per epoch
|
143 | 145 | cfg.datasets.train.num_logs = 5 # Number of training images to log
|
144 | 146 | ########################################################################################################################
|
|
153 | 155 | cfg.datasets.validation.path = [] # Validation data path
|
154 | 156 | cfg.datasets.validation.split = [] # Validation split
|
155 | 157 | cfg.datasets.validation.depth_type = [''] # Validation depth type
|
156 |
| -cfg.datasets.validation.cameras = [] # Validation cameras |
| 158 | +cfg.datasets.validation.cameras = [[]] # Validation cameras (double list, one for each dataset) |
157 | 159 | cfg.datasets.validation.num_logs = 5 # Number of validation images to log
|
158 | 160 | ########################################################################################################################
|
159 | 161 | ### DATASETS.TEST
|
|
167 | 169 | cfg.datasets.test.path = [] # Test data path
|
168 | 170 | cfg.datasets.test.split = [] # Test split
|
169 | 171 | cfg.datasets.test.depth_type = [''] # Test depth type
|
170 |
| -cfg.datasets.test.cameras = [] # Test cameras |
| 172 | +cfg.datasets.test.cameras = [[]] # Test cameras (double list, one for each dataset) |
171 | 173 | cfg.datasets.test.num_logs = 5 # Number of test images to log
|
172 | 174 | ########################################################################################################################
|
173 | 175 | ### THESE SHOULD NOT BE CHANGED
|
|
0 commit comments