forked from pliang279/LG-FedAvg
-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathmain_fedrep.py
144 lines (109 loc) · 5.38 KB
/
main_fedrep.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Python version: 3.6
import copy
import pickle
import numpy as np
import pandas as pd
import torch
from utils.options import args_parser
from utils.train_utils import get_data, get_model
from models.Update import LocalUpdateFedRep
from models.test import test_img, test_img_local, test_img_local_all
from models.Fed import FedAvg
import os
import pdb
if __name__ == '__main__':
# parse args
args = args_parser()
# set seed
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
torch.backends.cudnn.deterministic = True
np.random.seed(args.seed)
args.device = torch.device('cuda:{}'.format(args.gpu) if torch.cuda.is_available() and args.gpu != -1 else 'cpu')
if args.unbalanced:
base_dir = './save/{}/{}_iid{}_num{}_C{}_le{}/shard{}_unbalanced_bu{}_md{}/{}/'.format(
args.dataset, args.model, args.iid, args.num_users, args.frac, args.local_ep, args.shard_per_user, args.num_batch_users, args.moved_data_size, args.results_save)
else:
base_dir = './save/{}/{}_iid{}_num{}_C{}_le{}/shard{}/{}/'.format(
args.dataset, args.model, args.iid, args.num_users, args.frac, args.local_ep, args.shard_per_user, args.results_save)
algo_dir = "fedrep"
if not os.path.exists(os.path.join(base_dir, algo_dir)):
os.makedirs(os.path.join(base_dir, algo_dir), exist_ok=True)
dataset_train, dataset_test, dict_users_train, dict_users_test = get_data(args)
dict_save_path = os.path.join(base_dir, algo_dir, 'dict_users.pkl')
with open(dict_save_path, 'wb') as handle:
pickle.dump((dict_users_train, dict_users_test), handle)
# build a global model
net_glob = get_model(args)
net_glob.train()
# build local models
net_local_list = []
for user_idx in range(args.num_users):
net_local_list.append(copy.deepcopy(net_glob))
# training
results_save_path = os.path.join(base_dir, algo_dir, 'results.csv')
loss_train = []
net_best = None
best_loss = None
best_acc = None
best_epoch = None
lr = args.lr
results = []
w_glob = None
update_keys = [k for k in net_glob.state_dict().keys() if 'linear' not in k]
print("all keys", net_glob.state_dict().keys())
print("aggregation keys", update_keys)
w_glob = {k: net_glob.state_dict()[k] for k in update_keys}
for iter in range(args.epochs):
loss_locals = []
m = max(int(args.frac * args.num_users), 1)
idxs_users = np.random.choice(range(args.num_users), m, replace=False)
w_locals = []
# local updates
for idx in idxs_users:
net_local = copy.deepcopy(net_local_list[idx])
# Server sends current representation φ^t to these clients
net_local.load_state_dict(w_glob, strict=False)
local = LocalUpdateFedRep(args=args, dataset=dataset_train, idxs=dict_users_train[idx])
w = local.train(net=copy.deepcopy(net_local).to(args.device), lr=lr)
w_locals.append(copy.deepcopy(w))
net_local_list[idx].load_state_dict(copy.deepcopy(w))
if (iter + 1) in [args.epochs//2, (args.epochs*3)//4]:
lr *= 0.1
# update global weights
w_glob = FedAvg(w_locals)
w_glob = {k: w_glob[k] for k in update_keys}
net_glob.load_state_dict(w_glob, strict=False)
# - Evaluation - #
# Backup local parameters
backup_net_local_list = copy.deepcopy(net_local_list)
backup_local_epoch = args.local_ep
# fine-tuning
for idx in range(args.num_users):
net_local = copy.deepcopy(net_local_list[idx])
# Server sends current representation φ^t to these clients
net_local.load_state_dict(w_glob, strict=False)
local = LocalUpdateFedRep(args=args, dataset=dataset_train, idxs=dict_users_train[idx])
w = local.train(net=copy.deepcopy(net_local).to(args.device), lr=lr)
w_locals.append(copy.deepcopy(w))
net_local_list[idx].load_state_dict(copy.deepcopy(w))
if (iter + 1) % args.test_freq == 0:
acc_test, loss_test = test_img_local_all(net_local_list, args, dataset_test, dict_users_test, return_all=False)
print('Round {:3d}, Test loss {:.3f}, Test accuracy: {:.2f}'.format(
iter, loss_test, acc_test))
if best_acc is None or acc_test > best_acc:
net_best = copy.deepcopy(net_glob)
best_acc = acc_test
best_epoch = iter
for user_idx in range(args.num_users):
best_save_path = os.path.join(base_dir, algo_dir, 'best_local_{}.pt'.format(user_idx))
torch.save(net_local_list[user_idx].state_dict(), best_save_path)
results.append(np.array([iter, loss_test, acc_test, best_acc]))
final_results = np.array(results)
final_results = pd.DataFrame(final_results, columns=['epoch', 'loss_test', 'acc_test', 'best_acc'])
final_results.to_csv(results_save_path, index=False)
# rollback local parameters
net_local_list = copy.deepcopy(backup_net_local_list)
print('Best model, iter: {}, acc: {}'.format(best_epoch, best_acc))