forked from wcharczuk/go-chart
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlinear_regression_series.go
187 lines (157 loc) · 4.61 KB
/
linear_regression_series.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
package chart
import (
"fmt"
)
// Interface Assertions.
var (
_ Series = (*LinearRegressionSeries)(nil)
_ FirstValuesProvider = (*LinearRegressionSeries)(nil)
_ LastValuesProvider = (*LinearRegressionSeries)(nil)
_ LinearCoefficientProvider = (*LinearRegressionSeries)(nil)
)
// LinearRegressionSeries is a series that plots the n-nearest neighbors
// linear regression for the values.
type LinearRegressionSeries struct {
Name string
Style Style
YAxis YAxisType
Limit int
Offset int
InnerSeries ValuesProvider
m float64
b float64
avgx float64
stddevx float64
}
// Coefficients returns the linear coefficients for the series.
func (lrs LinearRegressionSeries) Coefficients() (m, b, stdev, avg float64) {
if lrs.IsZero() {
lrs.computeCoefficients()
}
m = lrs.m
b = lrs.b
stdev = lrs.stddevx
avg = lrs.avgx
return
}
// GetName returns the name of the time series.
func (lrs LinearRegressionSeries) GetName() string {
return lrs.Name
}
// GetStyle returns the line style.
func (lrs LinearRegressionSeries) GetStyle() Style {
return lrs.Style
}
// GetYAxis returns which YAxis the series draws on.
func (lrs LinearRegressionSeries) GetYAxis() YAxisType {
return lrs.YAxis
}
// Len returns the number of elements in the series.
func (lrs LinearRegressionSeries) Len() int {
return MinInt(lrs.GetLimit(), lrs.InnerSeries.Len()-lrs.GetOffset())
}
// GetLimit returns the window size.
func (lrs LinearRegressionSeries) GetLimit() int {
if lrs.Limit == 0 {
return lrs.InnerSeries.Len()
}
return lrs.Limit
}
// GetEndIndex returns the effective limit end.
func (lrs LinearRegressionSeries) GetEndIndex() int {
windowEnd := lrs.GetOffset() + lrs.GetLimit()
innerSeriesLastIndex := lrs.InnerSeries.Len() - 1
return MinInt(windowEnd, innerSeriesLastIndex)
}
// GetOffset returns the data offset.
func (lrs LinearRegressionSeries) GetOffset() int {
if lrs.Offset == 0 {
return 0
}
return lrs.Offset
}
// GetValues gets a value at a given index.
func (lrs *LinearRegressionSeries) GetValues(index int) (x, y float64) {
if lrs.InnerSeries == nil || lrs.InnerSeries.Len() == 0 {
return
}
if lrs.IsZero() {
lrs.computeCoefficients()
}
offset := lrs.GetOffset()
effectiveIndex := MinInt(index+offset, lrs.InnerSeries.Len())
x, y = lrs.InnerSeries.GetValues(effectiveIndex)
y = (lrs.m * lrs.normalize(x)) + lrs.b
return
}
// GetFirstValues computes the first linear regression value.
func (lrs *LinearRegressionSeries) GetFirstValues() (x, y float64) {
if lrs.InnerSeries == nil || lrs.InnerSeries.Len() == 0 {
return
}
if lrs.IsZero() {
lrs.computeCoefficients()
}
x, y = lrs.InnerSeries.GetValues(0)
y = (lrs.m * lrs.normalize(x)) + lrs.b
return
}
// GetLastValues computes the last linear regression value.
func (lrs *LinearRegressionSeries) GetLastValues() (x, y float64) {
if lrs.InnerSeries == nil || lrs.InnerSeries.Len() == 0 {
return
}
if lrs.IsZero() {
lrs.computeCoefficients()
}
endIndex := lrs.GetEndIndex()
x, y = lrs.InnerSeries.GetValues(endIndex)
y = (lrs.m * lrs.normalize(x)) + lrs.b
return
}
// Render renders the series.
func (lrs *LinearRegressionSeries) Render(r Renderer, canvasBox Box, xrange, yrange Range, defaults Style) {
style := lrs.Style.InheritFrom(defaults)
Draw.LineSeries(r, canvasBox, xrange, yrange, style, lrs)
}
// Validate validates the series.
func (lrs *LinearRegressionSeries) Validate() error {
if lrs.InnerSeries == nil {
return fmt.Errorf("linear regression series requires InnerSeries to be set")
}
return nil
}
// IsZero returns if we've computed the coefficients or not.
func (lrs *LinearRegressionSeries) IsZero() bool {
return lrs.m == 0 && lrs.b == 0
}
//
// internal helpers
//
func (lrs *LinearRegressionSeries) normalize(xvalue float64) float64 {
return (xvalue - lrs.avgx) / lrs.stddevx
}
// computeCoefficients computes the `m` and `b` terms in the linear formula given by `y = mx+b`.
func (lrs *LinearRegressionSeries) computeCoefficients() {
startIndex := lrs.GetOffset()
endIndex := lrs.GetEndIndex()
p := float64(endIndex - startIndex)
xvalues := NewValueBufferWithCapacity(lrs.Len())
for index := startIndex; index < endIndex; index++ {
x, _ := lrs.InnerSeries.GetValues(index)
xvalues.Enqueue(x)
}
lrs.avgx = Seq{xvalues}.Average()
lrs.stddevx = Seq{xvalues}.StdDev()
var sumx, sumy, sumxx, sumxy float64
for index := startIndex; index < endIndex; index++ {
x, y := lrs.InnerSeries.GetValues(index)
x = lrs.normalize(x)
sumx += x
sumy += y
sumxx += x * x
sumxy += x * y
}
lrs.m = (p*sumxy - sumx*sumy) / (p*sumxx - sumx*sumx)
lrs.b = (sumy / p) - (lrs.m * sumx / p)
}