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Abstract

A new method for measuring thermal conductivity is being adapted from the method of

measuring isotropic thermal conductivity in snow with needle probes as used by Sturm,

Johnson and others, in order to enable the determination of anisotropic thermal conduc-

tivities. This method has particular relevance to measuring thermal conductivity of nat-

ural snowpacks where conductivity can be strongly anisotropic due to structures that de-

velop from vapor transport-induced metamorphism, self-compaction and other mecha-

nisms, and where there are known discrepancies between density-conductivity relations

empirically derived from guarded hot plate and needle probe methods.

Both analytically-based solutions and finite element numerical solutions to the anisotropic

case are used to calculate the expected effective thermal conductivity as a function of

anisotropic thermal conductivity and needle orientation. Additionally, preliminary mea-

surements of both anisotropic salt/sugar layered samples and of snow were taken. Both

suggest that detecting anisotropy in such materials is possible, though made difficult by

variability between measurements and the requirement of multiple measurements at var-

ious angles. These studies suggest that anisotropy in snow may be able to explain in part

the discrepancies between guarded hot plate and needle probe measurements in certain

cases.
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Chapter 1

Introduction

1.1 Why Snow’s Conductivity Matters

The thermal properties of snow are of interest to scientists studying Arctic and sub-Arctic

climates because, during the long, cold winters in this region, snow’s thermal behavior

plays a critical role in determining the net energy balance between Earth’s surface and the

atmosphere. After all, any heat transfer occurring between the Earth and the atmosphere

over snow-covered ground must go through the snow first (Figure 1.1). In fact, the snow

itself may store and release energy over time.

Figure 1.1: Arctic and Sub-Arctic climate is affected largely by heat transfer between the

atmosphere and the ground. Snowpack adds thermal resistance transfer, affecting this heat

transfer.

This energy transfer is critical in accurate climate models for these cold regions, there-

fore the effective thermal conductivity of snow is a very important factor for these models,

and has been studied thoroughly. [Sturm et al., 2002; Sturm and Johnson, 1992, 1991]
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1.2 Thermal Conductivity Measurements of Snow

A typical technique for measuring thermal conductivity, especially in the context of engi-

neering materials such as building insulation, is the guarded hot plate method. For this

technique, a constant temperature gradient is induced across the material, and heat flux

over the material is measured. By Fourier’s Law, k = q̇l
A∆T , where q̇ is the heat flux, A is

the cross-sectional area of the sample, l is the sample thickness, and ∆T is the temperature

difference across the sample. This technique works well in many cases.

Another technique used for porous materials, such as soils and snow, is the needle

probe method. A needle probe consists of a long, thin needle with heating wire running

along its interior, and a temperature sensor in the center. This configuration approximates

an infinite line of constant-flux heat source (Figure 1.2). [Carslaw and Jaeger, 1959]

Figure 1.2: An illustration of a needle probe in cross-section. Note that the heat trace

in many needle probes, including the one used in experiments for this research, actually

wraps around an inner core instead of running axially through the needle.

This needle is inserted into the material whose thermal conductivity is being measured,

and a constant voltage is applied to the needle’s heating element. This causes a constant

heat flux along the needle, and, knowing the resistance of the heat trace, this heat flux may

be calculated. This causes the material’s temperature near the needle to rise (Figure 1.3a).

After some given amount of time, the heating element is turned off, and the temperature

around the needle begins to fall back towards ambient (Figure 1.3b).

The temperature data measured over time for these two periods are called the heating

cooling curves, respectively. Based on the slopes of these curves as a function of ln(t) and
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(a) Heating Curve (b) Cooling Curve

Figure 1.3: Typical heating and cooling curves from a needle probe measurement. Time in

the cooling curve is measured from the end of the heating curve.

approximate analytical solutions for these situations, effective thermal conductivity may

be calculated.

In this document, studies concentrate on the heating curve. In fact, the numerical and

analytical approaches focus exclusively on the heating curve. However, the benchtop and

in-situ measurements use both heating and cooling curves.

1.3 Snow Metamorphic Principles

The structure of a snowpack is strongly influenced by outside environmental factors. Im-

mediately after falling from the sky, snow begins to metamporphose as it compacts un-

der its own weight. In addition to this, temperature gradients cause snow to sublimate

and re-form in different regions of the snowpack, in a process called vapor transport. Va-

por transport is best known for causing depth hoar, but occurs throughout the snowpack.

Other events, such as freeze-thaw events, may also change the form of snow. All these

metamorphic processes on snow cause it to form regions of varying thermal conductiv-

ity. In some cases, these regions may form sharp, distinct layers with constant properties,

while in other cases they have continuously varying properties.
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1.4 Anisotropic Behavior in Snow

Anisotropy in snow can occur in two ways: Either due to small-scale structure in the snow,

or due to macroscale features that cause anisotropy in the aggregate.

On the small scale, snow may be anisotropic due to differences in grain boundary con-

nections, as illustrated in Figure 1.4a. [Pitman and Zuckerman, 1968] In this case, the layer

of snow is itself anisotropic with respect to thermal conductivity because grains connect

to each other more completely in one direction than in another. This occurs, for exam-

ple, in depth hoar, where vapor transport causes the grains to develop vertically-aligned

structural features.

At a macroscale, alternating regions of low-conductivity and high-conductivity ma-

terial (isotropic or not) may also act in the aggregate as a single material of anisotropic

thermal conductivity—In other words, the effective thermal conductivity parallel to the

orientation of the layers may be different than the effective thermal conductivity orthog-

onal to the layers. For example, suppose a composite exists of alternating layers, each of

thickness l and with conductivities k1 and k2, as in Figure 1.4b.

(a) Structural anisotropy, caused by differing

inter-grain boundaries.

(b) Aggregate anisotropy, caused by alternat-

ing layers of isotropic material.

Figure 1.4: Anisotropy in snow may either occur as a result of microstructure features, or

in the aggregate due to geometry.
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In the vertical direction, the effective thermal conductivity is 1
2 (k1 +k2) [Lunardini, 1981].

However, in the horizontal direction the effective thermal conductivity is 2
(

1
k1

+ 1
k2

)−1
. An

analogous analysis could be applied to a number of geometries. Note that this particu-

lar layered geometry can not cause an aggregate anisotropy with a vertical conductivity

greater than the horizontal conductivity.

1.5 Motivation for Measuring Snow Anisotropy

It is expected that thermal conductivity in snow should be correlated with snow density,

since density is a function of percent composition ice and air. [Pitman and Zuckerman,

1968] This is seen in practice, based both on measurements taken with the guarded hot

plate method and with the needle probe method. However, the guarded hot plate method

consistently predicts higher thermal conductivity as a function of snow density than the

needle probe, and nobody knows why.

One theory that could potentially explain this is that this discrepancy is caused by

anisotropy in snow. Guarded hot plate methods typically measure conductivity in the

vertical direction (kz), while needle probe measurements typically measure some sort of

average of vertical and horizontal thermal conductivities (kz and kxy). If kz is consistently

higher than kxy in snow, then this could potentially explain the discrepancy.

In order to properly address this theory, it must be known if anisotropic thermal con-

ductivity in snow can be measured with needle probes. If this can be done, then the ac-

curacy of such determinations and the number of measurements required to make a de-

termination, must also be known. Approaching this question is the primary focus of this

research, as it enables answering the following questions:

• How severe is anisotropy in snow? Is the amount of anisotropy significant? Can

horizontal measurements be used to approximate vertical thermal conductivity?

• Is anisotropy in snow predictable? That is, could one take a single measurement and

extrapolate from it the anisotropic thermal conductivity?

If anisotropy in snow is significant and predictable, then anisotropy in snow may be

able to explain the historical difference between guarded hot plate methods and needle

probe methods. However, if snow anisotropy is typically not very severe or if needle
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probe measurements should closely approximate vertical conductivities, then anisotropy

in snow is likely not the explanation for these differences.

1.6 Anisotropic Model

In every model studied, it has been assumed that the horizontal plane has the same thermal

conductivity and that only the vertical direction differs. In other words, kx = ky = kxy 6= kz.

Each model aims to predict the effective conductivity, keff as a function of angle.

In both analytical and numerical models and in the measurements, the angle parame-

ter, θ, is measured from the horizontal plane, as in Figure 1.5.

Figure 1.5: A diagram illustrating the measurement θ in models and measurements in this

document. In all these cases, the angle is measured from the horizontal plane, which is

also the plane of isotropy.

1.7 Document Outline

First, this document will discuss the differential equations associated with adapting the

isotropic needle probe technique to the anisotropic case, as well as analytical approaches

to solving them.

Second, the use of 3D finite element models in COMSOL with MATLAB to find numer-

ical solutions to the problem will be discussed.

Then, this document will cover techniques for testing the predictions of the these ap-

proaches with both real snow and engineered anisotropic materials, in this case using table

salt and table sugar.

The results of the analytical and numerical approaches will then be compared to each

other and to the measurements of snow and engineered materials. The meanings of these
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results, and their ramifications with regards to conductivity/density relations will also be

discussed.

Finally, unanswered questions and avenues for future research will be described.
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Chapter 2

Analytical Needle Probe Approach

2.1 Introduction

The technique used to measure thermal conductivity with a needle probe is based on the

assumption that the needle approximates an infinite line source of energy with a con-

stant heat flux embedded in an infinite medium. The origins of the analytical solution for

isotropic thermal conductivity may be found in Carslaw and Jaeger’s book, “Conduction

of Heat in Solids.” [Carslaw and Jaeger, 1959]

The method based on Carslaw and Jaeger’s solution depends on solving a 2-D problem,

where all planes orthogonal to the needle have the same temperature distribution; in other

words, temperature is not a function of axial position. Moreover, the problem is further

simplified by posing the problem into radial coordinates and solving for temperature as a

function of radial distance only.

In the isotropic case, this is straightforward, as conductivity is a constant scalar. Unfor-

tunately the anisotropic case is more complex, but luckily not completely intractible.

2.2 The Isotropic Case

The isotropic case solves the following equation:

k∇
2T = ρC

∂T
∂t

Where T is temperature, k is a scalar thermal conductivity, ρ is density, C is volumetric

heat capacity, and t is time.

By casting this problem into cylindrical coordinates, the equations may be simplified

such that they are a function of radial distance r only (as temperature is assumed to not be

a function of axial position z or angle φ).

After applying this transformation and solving the equation, the analytical solution to

the problem becomes:

T(r, t) =− q
4πk

Ei
(
− r2

4kt

)
(2.1)
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where q is heat flux from the needle per linear distance, and Ei() is as defined in Equa-

tion 2.2 for real-valued arguments.

Ei(x) =−
∫

∞

−x

e−t

t
dt (2.2)

Solving for the exponential integral analytically is not possible, and numerical solu-

tions can be difficult. Typically, an approximation for small r2/t is used instead:

T(r, t) =
q

4πk
ln
(

4kt
r2

)
− γq

4πk
(2.3)

Typical use of this function is to find dT
d(ln t) and solve for k. Equation 2.3 will be used for

the remainder of this analysis, though it could easily be applied to Equation 2.1 as well.

2.3 Difficulties in the Anisotropic Case

The anisotropic case varies from the isotropic one in that instead of a scalar thermal con-

ductivity k, one must solve the problem using an n× n thermal conductivity, [K], where

n is the number of dimensions in the problem. As a consequence, reducing the problem

into two dimensions becomes more difficult. Moreover, when the problem is posed in

cylindrical coordinates, the solution becomes a function not only of r, but of φ as well.

2.4 Posing The Problem in Two Coordinates

By assuming that temperature distribution is not a function of axial direction z, one may

reduce the problem to an analogous one in orthogonal directions x and y instead:

∇xy ·
(
[K]2×2∇xyT

)
= ρC

∂T
∂t

(2.4)

Without loss of generality, it may be further simplified like so:

∇ ·

kx 0

0 ky

∇T

 = ρC
∂T
∂t

(2.5)

This may be done by choosing the directions x and y such that the matrix is diagonal.

The values of kx and ky may be found by finding the components of [K] that are in the

xy plane.



10

In particular, Equation 2.6 was used in practice.

[
kx,ky

]
= Eig




1 0 0

0 1 0

0 0 0

 [K]

 (2.6)

2.5 Coordinate Transformation

Figure 2.1: A 2-dimensional linear coordinate transformation.

In order to apply the isotropic solution to this anisotropic case, a coordinate transfor-

mation may be applied such that the problem is transformed into an isotropic case with

respect to some x′ = axx and y′ = ayy, as in Figure 2.1. Without loss of generality, suppose

ax = 1.
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dx′

dx
= 1 (2.7)

dy′

dy
= ay (2.8)

∂f
∂x

=
∂f
∂x′

dx′

dx
=

∂f
∂x′

(2.9)

∂f
∂y

=
∂f
∂y′

dy′

dy
= ay

∂f
∂y′

(2.10)

∇T =
∂T
∂x′

êx′ + ay
∂T
∂y′

êy′ (2.11)

[K]∇T = kx
∂T
∂x′

êx′ + kyay
∂T
∂y′

êy′ (2.12)

∇ · ([K]∇T) = kx
∂2T
∂x′2

+ kya2
y

∂2T
∂y′2

(2.13)

(2.14)

Suppose the right hand side is equal to the equivalent isotropic expression:

k
(

∂2T
∂x′2

+
∂2T
∂y′2

)
= kx

∂2T
∂x′2

+ kya2
y

∂2T
∂y′2

(2.15)

As a result,

k = kx (2.16)

ay =

√
kx

ky
(2.17)

(2.18)

Therefore, the following coordinate transformation will allow for the application of

isotropic solutions to an isotropic case with k = kx:x′

y′

 =

1 0

0
√

kx
ky

x

y

 (2.19)
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2.6 From Temperature Distribution to Effective Thermal Conductivity

Using Equation 2.19, the isotropic solution may be applied:

kx∇
2T = ρC

∂T
∂t

(2.20)

to yield the following result (for sufficiently large t/(r′)2):

T(r′, t) =
q

4πkx
ln
(

4kxt
r′2

)
− γq

4πkx
(2.21)

In the isotropic case, the value of r does not change the derivative with respect to the

natural log of time, as long as it is assumed constant. In contrast, the anisotropic case re-

quires that another transformation is applied to r′ so that both kx and ky may be recovered.

This requires that some contextual meaning is assigned to r and r′. In this analysis, it is as-

sumed that the measurement occurs at some r = r0, perhaps on the surface of the physical

needle.

This approach isn’t without its problems. For example, it supposes that the isotherms

are all circles in the transformed geometry, but if a finite-sized needle was actually being

modeled in the problem then the isotherms near the (elliptically-shaped in the transformed

domain) needle would be elliptical as well, and only isotherms sufficiently far away would

be round. However, this approach allows us to keep using the ln() approximation, while a

solution given a finite needle would likely require the use of Bessel functions.

Applying this technique to the anisotropic case, rxy = cos(θ)êx + sin(θ)êy must also be

transformed into rx′y′ :

rx′

ry′

 =

1 0

0
√

kx
ky

r0 cos(θ)

r0 sin(θ)


= r0

(
cos(θ)êx +

√
kx

ky
êy

)

∣∣∣∣r′∣∣∣∣2 = r2
0

(
cos2(θ) +

kx

ky
sin2(θ)

)
(2.22)
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This means that the temperature around the needle should now vary as a function of

θ, unlike in the isotropic case. Now, since the needle only measures a single value, it may

be assumed that the measured quantity is an average temperature, such as the average

surface temperature of the probe. This may be expressed like so:

Tavg(t) =
4πkx

q

E(ln(t), kx
ky

)

E(1, kx
ky

)
(2.23)

where:

E(f (φ,α),α) =
∫ 2π

0
f
√

cos2(φ) + αsin2(φ)dφ (2.24)

2.7 Finding Effective Conductivity as a Function of Needle Orientation

In order to extract the effective k value, a function of the form C1 ln(t) + C2 is fit to Equation

2.23. Then, all that is left is to evaluate the functions at various combinations of kxy, kz and

θ.

2.8 Conclusions

An analytical approach to studying anisotropic thermal conductivity with needle probes

is more difficult than with the isotropic case. However, by using coordinate projections to

pose the problem in two dimensions, and by applying coordinate transformations to the

domain, one may apply the accepted isotropic theory to the anisotropic case with mini-

mal modification. By numerically evaluating the predicted temperature distribution over

time, one may find the expected conductivity measurement given the theory holds for

anisotropic materials.
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Chapter 3

Numerical Needle Probe Approach

3.1 Introduction

Numerical experiments were used to simulate needle probes in anisotropic mediums with

three-dimensional finite element heat transfer models in COMSOL 3.5a. These consisted of

a large-scale parametric study using varying combinations of kxy, kz and angle orientation

θ.

3.2 Geometry and Domain Properties

Figure 3.1: A COMSOL screenshot showing the geometry of the finite element model,

which consists of a metal needle in a sphere of a snow-like material.

The needle is simulated as a long, thin steel cylinder embedded in the center of a sphere

of a snow-like material (called snow in this model), as in Figure 3.1. While most of the
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Table 3.1: Constants used in numerical models.

radius of needle 0.25 mm

length of needle 10 cm

radius of snow 40 cm

density of needle 8000 kg/m3

CP of needle 460 J
/

kg ·K
q of needle 0.5 W/m

k of needle 160 W/m·K

density of snow 200 kg/m3

CP of snow 2050 J
/

kg ·K

dimensions and material properties are held constant (see Table 3.1), the anisotropic con-

ductivity of the snow is parameterized in the form of a 3× 3 symmetric matrix with all

positive eigenvalues. In practice, this is done by specifying a diagonal matrix Λ with pos-

itive eigenvalues kxy and kz and a rotation matrix R around the x axis, and then defining

K = RTΛR as in Equation 3.1 :

K =


cos(θ) 0 sin(θ)

0 1 0

−sin(θ) 0 cos(θ)




kxy 0 0

0 kxy 0

0 0 kz




cos(θ) 0 −sin(θ)

0 1 0

sin(θ) 0 cos(θ)

 (3.1)

The boundary conditions on the surface of the sphere enforce zero heat flux, and the

radius of the sphere is chosen such that the sphere approximates an infinite medium.

Point temperatures recorded are the center of the needle, which corresponds to the lo-

cation of the thermocouple used in real-world experiments, and six points on the surface

of the snow, to ensure that the sphere is sufficiently large by checking for a near-zero in-

crease in temperatures on these points. In these models, the increase in temperature is on

the order of 10−14 degrees Kelvin.

3.3 MATLAB in Geometry-Based Parametric Studies Using COMSOL 3.5a

Unfortunately, COMSOL 3.5a does not have the facilities necessary to implement a geometry-

changing multi-parameter parametric study as required from the GUI alone. However,
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COMSOL 3.5a does have facilities for scripting with MATLAB.

MATLAB code written to implement the parametric study was largely auto-generated

by COMSOL, by building a base model in COMSOL 3.5a and exporting to an m-file. This

code is split into two parts: The meshing code, and the solving code. These pieces of code

are wrapped in functions, called “mesher” and “solver” respectively, and used by a main

procedure called “worker.m.”

Figure 3.2: A side-view of COMSOL’s results, focusing on the needle. Colors indicate

temperature.

3.4 Automatic Calculation of Conductivity from Simulated Time/Temperature Data

Results from COMSOL are automatically fitted against the linear model with respect to

ln(t) by “dropping” early (t,T) datapoints until the correlation coefficient of the remaining

points was sufficiently high, as in Figure 3.3. Then, a linear curvefit is applied to these

remaining points. Finally, the slope of this fit is used to calculate keff.

The results from these analyses are organized into a nested cell array which mirrors

the format of the two MATLAB matrices k xy and k z. The data in each slot of the nested

array is itself a cell array containing the simulation results, organized as shown in Figure

3.4. Typically, the only data saved from the simulation was the (t,T) data from the center of

the modeled needle, the average of the temperatures on the surface of the sphere, and the
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Figure 3.3: An illustration of the method used to find the ”long-time” slope of the numer-

ical simulations, which used a correlation coefficient to estimate the ”straightness” of a

section.

Figure 3.4: Contents of a cell array, representing the results of a particular simulation.

simulated keff. In some runs, the raw structure representing the problem to COMSOL was

exported back to the native .mph format for further study, such as viewing the temperature

distribution over the entire domain as in Figure 3.2.

A number of analyses, some of more use than others, can be applied to the data. For

example, one procedure applied asserted that all averaged sphere surface temperatures

had increased by less than a thousandth of a degree.

3.5 Convergence Study

A small, informal convergence study was executed in order to get a general idea of how

appropriate the model’s chosen grid size is. A convergence study, in this context, consists

of running the same model with different grid sizes and studying how the results change

as a function of grid size. The goal is to show that the problem converges on a particular
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solution when grid size is sufficiently refined. While this can’t prove that the solution being

converged to is the correct solution, it can show that, given that the convergent solution is

correct, that the model uses a sufficiently refined grid to get sufficiently accurate results.

For this convergence study, a particular solution was chosen from the finite element

parametric study and the mesh was refined to different levels. An analysis of these results

should then give an idea of the convergence properties of the problem.

One issue that occurs with such convergence studies is that refining the grid exponen-

tially increases the difficulty of solving the resulting finite element model. In this instance,

the grid could only be refined once without reaching a point where solving the problem

became impractical. This gives only two data points for which to base any conclusions,

but even this may be useful.

Table 3.2: It quickly becomes impractical to increase the mesh size of a model, as increases

in runtime are non-linear and are limited by both CPU and computer memory.

Number of Elements Time to Complete

35892 elements ≈ 10 minutes

159641 elements ≈ 2 hours

528945 elements ??? (> 3 weeks)

3.6 Conclusions

COMSOL 3.5a is used to run three-dimensional simulations of thermal conduction in the

needle probe problem, in concert with MATLAB for automation and post-processing. The

method generated useful information on predicted thermal conductivity measurements

from a heating curve approach given an anisotropy and a needle orientation with respect

to this needle orientation.
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Chapter 4

Experimental Measurements

4.1 Introduction

In addition to theoretical results, real world cases must be measured in order to validate

the theory. In this chapter, methods for making actual measurements in both snow and in

engineered materials are explored. Moreover, methods for building engineered materials

are discussed.

4.2 Needle Probe Measurement Fundamentals

Needle probe measurements are taken using an apparatus borrowed from the Cold Re-

gions Research and Engineering Laboratory (CRREL), illustrated in Figure 4.1. Encased

in a Pelican case for protection are a Campbell CR10X data logger, a relay switch, a 12v

gel cell for the CR10X and a series of D-cells to power the heating coils in the needle. The

program that came with the data logger uses the relay switch to control the heat flux from

the needle, and records temperature data from the needle’s thermocouple, as well as the

voltage across the heating element, over the course of a five minute heating curve and a

ten minute cooling curve.

Once testing is complete, data may be uploaded from the data logger using Campbell’s

PC200W software (shown in Figure 4.2) and a serial connection.

Using PC200W, data may be uploaded from the CR10X in a raw binary format and

then converted to a .csv format. This .csv data may be analyzed with either spreadsheet

software, a series of scripts, or both. For this series of experiments, Excel, Gnumeric and

cat/append are used to verify the existence of data and to combine datasets, while python

is used for the analysis. Generally, each analysis consists of subtracting t0 from the relevant

time intervals, subsetting the collected data over a straight section, and finding the slope.

In addition, a correction factor, named the McGaw Cooling Curve Correction after a CR-

REL researcher, is used for benchtop measurements to account for the insulation around

the apparatus.

Generally, each measurement also has some metadata associated with it. In particular,

anisotropic measurements have an angle associated with them, and snow measurements

also have a coordinate position on the snowpack associated with them. These are mea-
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Figure 4.1: Extruded illustration of the needle probe apparatus. Major parts are labelled.

sured with a protractor and a tape measure, respectively. This means that, while taking

measurements, one has to be careful to make sure that they can keep the proper metadata

associated with each measurement.

Unlike the case of numerical experiments, it is extremely important in real-world experiments—

especially in the case of snow—to hand-inspect every time/temperature curve. This is be-

cause, unlike the numerical experiments, there is a significant chance that data will not be

usable. In the case of snow in particular, convection is typically experienced near the end

of the heating curve and the beginning of the cooling curve.

4.3 Snow Conductivity Measurements

The first step in measuring proper snow is to make a vertical cut in the snowpack, as in

Figure 4.4.

Then, for every measurement, the needle is inserted into snow and a measurement is

taken. Snow is relatively difficult to work with due to the low structural integrity of the

material. The wire connecting the probe to the data logger is stiff enough at low tempera-
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Figure 4.2: A screenshot of PC200W, the software used to pull data off the CR10X data

logger.

tures that situating the needle without ruining the snowpack can be quite a challenge.

Along with each conductivity measurement, the height from the ground—measured

with a tape measure—and the angle of insertion—measured with a protractor and a plumb

bob—were recorded as metadata. In addition, for each series of measurements at a partic-

ular region, the density of the snow is also measured with a cardboard cylinder (used as a

control volume) and a scale.

4.4 Benchtop Tests

A standard used to benchmark needle probes is to measure the conductivity of a large

Nalgene bottle full of glycerine and surrounded in insulating foam to mitigate changes in

room temperature. Glycerine was chosen because it has almost the same conductivity as

water and does not readily convect. Moreover, glycerine does not leave an air gap between

the needle and the surrounding medium like many porous materials, such as snow, will.

A method for testing anisotropic measurements by using alternating layers of more-
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Figure 4.3: A plot of temperature vs. time from a real-world measurement of snow. Each

curve must be analyzed by-hand to check for such effects as convection, as seen on the

right-hand side of this curve.

conductive and less-conductive materials has been devised, based on this glycerine bench-

mark test. However, instead of glycerine, the materials used are table salt and table sugar.

4.5 Raw Materials for the Anisotropic Composite

Salt and sugar’s conductivities alone were both measured using the needle probe appara-

tus. These measurements resulted in conductivities of 0.225 W/m/K and 0.106 W/m/K,

respectively.

Assuming alternating layers of equal thickness, the anisotropic thermal conductivities

in the aggregate should be:

kxy =
1
2
(
ksalt + ksugar

)
= 0.166 (4.1)

kz = 2
(

1
ksalt

+
1

ksugar

)−1

= 0.144 (4.2)

kz

kxy
= 0.870 (4.3)
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Figure 4.4: A close-up shot of tested snowpack.

Despite the conductivity of table salt being roughly twice that of sugar, the anisotropic

conductivity ratio is fairly close to one, meaning that the anisotropy of the experimental

medium, while significant, is relatively weak. Advantageously, however, salt and sugar

are relatively inexpensive media to work with.

4.6 Apparatus for Containing Anisotropic Composite

In order to effectively change the directions of anisotropy, a foam box for the nalgene bot-

tle was built that could be rotated on an axis and clamped in place. The resulting angle

from the horizontal can be measured with a protractor. The apparatus was designed with

gels such as glycerine in mind, such that the layers would self-level. However, because

powders were used instead of gels, leveling had to be done by hand, usually with a spoon.

The sugar was dyed green in order to differentiate it from the salt.
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Table 4.1: Raw results of salt and sugar measurements after calculating conductivity. The

multiple results were averaged for the purpose of predicting anisotropic conductivity of

an alternately-layered medium.

Material # Heating Cooling Average Standard Deviation

Pure salt 1 0.222 0.220 0.225 0.015

2 0.218 0.256

3 0.216 0.219

Pure sugar 1 0.108 0.113 0.106 0.008

2 0.098 0.109

3 0.094 0.113

Figure 4.5: An illustration of the apparatus used in benchtop measurements. The appa-

ratus was designed to tilt in order to cause alternating layers of self- leveling materials

to meet the needle at a given angle. However, the materials actually used were not self-

leveling, meaning the tilting apparatus was of limited utility.
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Figure 4.6: A photograph of the benchtop measurement apparatus in use, at 30 degrees.
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Chapter 5

Results and Interpretation

5.1 Parameters and Nondimensionalization

For most analyses, many of the parameters and results are non-dimensionalized. In par-

ticular, instead of separate parameters for kz and kxy, kz and keff are both normalized by kxy.

Numerical experiments verified that this is permissible, as numerical experiments with

different kz and kxy parameters but equivalent ratios kz
/

kxy resulted in very similar ratios

of keff
/

kxy .

Angle is an exception. In this analysis, all angles are given as degrees from the hori-

zontal (xy) plane.

5.2 Numerical vs. Analytical Predictions

A 3-D plot of the numerical and analytical predictions may be seen in Figures 5.1. This plot

shows that the two approaches to predicting measured conductivity as a function of angle

and anisotropy ratio have similar trends. However, there are important disagreements

which must be resolved.

Many details may be seen more readily in two-dimensional plots. In particular, Figure

5.2 shows theoretical predictions from both the analytical and numerical model as a func-

tion of anisotropic conductivity ratios, sliced by angle, while Figure 5.3 shows theoretical

predictions from both methods as a function of angle, sliced by anisotropic conductivity

ratios. Figure 5.2 readily shows that an increase in conductivity ratio above 1 has a weaker

effect on effective conductivity for the numerical model than in the analytical model. This

may be due to edge effects decreasing the effective thermal conductivity in the numeri-

cal model by conducting heat axially from the needle. The analytical model, in contrast,

does not model edge effects, as it models an infinitely long needle like the original needle

probe method. For the isotropic case, these edge effects have been studied and quantified

analytically by other researchers. [Blackwell, 1956]

Figure 5.3 also shows the smoothing seen in Figure 5.2, but also readily shows the pre-

dictions of both models for the isotropic case (keff
/

kxy = 1). Both models correctly predict

that effective thermal conductivity is not a function of angle for the isotropic case. How-

ever, it is also clear that the numerical model over-predicts keff by at least 10%.
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Figure 5.1: A comparison of the numerical results and the analytical theory shows general

agreement. Grey dots represent numerical simulation results, the grey surface represents

an interpolating surface of the dots, and the blue surface represents the analytical model.

Disagreement between the two may be due to edge effects and/or numerical model con-

vergence issues.

The dominant cause for this discrepancy is believed to be due to using a model with too

coarse of a mesh. The convergence study results show that, while the time/temperature

curves look largely the same (Figure 5.4), that the minor differences are magnified when

taking the derivative with respect to ln(t) such that the coarse grid reports a thermal con-

ductivity of about 110% of the finer grid (Table 5.1). This difference is of the same order

of magnitude as the difference seen between the numerical predictions and the analyti-

cal predictions, and it is believed that running the same simulations at a finer grid would

resolve most of the difference seen, particularly in the isotropic case.

However, some of this may also be due to edge effects, as evidenced by the cluster

of points at the zero angle (More readily seen in Figure 5.5), where it can be seen that,

in fact, the predictions for the numerical method are a very weak function of kxy and not

just the ratio of the anisotropic conductivities. Simply repeating the experiments at higher
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Figure 5.2: Slices of theoretical predictions by angle. Black points connected by dashed

lines represent numerical results, while solid blue lines represent analytical theory. It can

be seen that the analytical theory predicts measured conductivity to be a stronger function

of angle than the numerical data at higher conductivity ratios.

resolutions of mesh should be able to resolve this problem.

Figure 5.5 shows predictions for the special case of θ = 0, where the needle is oriented

parallel to the planes of isotropy. This special case is of interest because previous needle

probe measurements have determined effective conductivities at this angle, which may

or may not be accurate representations of kz, the vertical thermal conductivity, which is

what is measured by a guarded hot plate apparatus and is the conductivity of interest to

climatologists modeling heat transfer between the atmosphere and soil. If predictions for

keff are equal to kz, then the measured keff accurately reflects kz. This agreement between

measurements seems unlikely for anisotropic measurements, and in fact the numerical

model shows the expected trend of keff > kz for low conductivity ratios, and keff < kz for

higher conductivity ratios. However, the analytical model predicts that keff = kz for all

anisotropy ratios. While the analytical model shows expected behavior for the isotropic

case and shows the general trends one would expect, this surprising result casts doubt
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Figure 5.3: Slices of theoretical predictions by kz
/

kxy . Black points connected by dashed

lines represent numerical results, while solid blue lines represent analytical theory. It can

be seen that the analytical theory is perfect for the isotropic case (kz
/

kxy = 1), while the

numerical experiments report larger-than-expected values.

onto the validity of the analytical model.

5.3 Benchtop Measurements

It may be seen that there is a significant amount of variation between benchtop measure-

ments using the needle probe method in Figure 5.6 and Table 5.3, even accounting for

obviously failed measurements such as the removed outlier in Table 5.2. This is likely due

in part to the nature of numerical derivatives as well as the relatively unpredictable behav-

ior of porous materials. Given this variation, it is difficult to see which of the two models

(analytical or numerical) is more appropriate.

Based on a general curve fit, the benchtop results show a slight upward slope (Figure

5.6) as expected. However, given the variation in the benchtop results, it is statistically

possible that angle has absolutely no effect on the reading. This could be fixed with more
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Figure 5.4: A comparison of two T(t) curves from equivalent simulations with different

fineness of mesh. These two curves appear quite similar, but their long- time slopes are

measurably different

careful, exacting standards in the construction of the anisotropic materials, more measure-

ments at each angle, and measurements at more angles. In other words, given the vari-

ance of the measurements, many more measurements would have to be made in order to

reach any statistically significant conclusions, at least given the relatively low amount of

anisotropy of the sample.

Also given this variation and the relatively weak levels of anisotropy in the sample,

even with more measurements it could still prove difficult to deduce the degree of anisotropy

of the sample with this data and a curve fit to either the numerical or analytical predictions

alone.

5.4 In-Situ Snow Measurements

Due to the difficulty in taking snow measurements, very few snow measurements were

successfully completed (Table 5.4). This, on top of the inherent variation between measure-

ments seen in the method, snow measurements are also inconclusive. However, the mea-
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Table 5.1: A comparison of keff from two equivalent simulations with different fineness

of mesh. Despite the similarities in time/temperature curves, the resulting conductivity

calculations differ by nearly 10 %. Units are in W/m·K.

Slope

35892 elements 0.215

159641 elements 0.198

% Error 8.64 %

surements taken do indicate anisotropy to a greater degree of confidence than the benchtop

measurements, as may be seen in Figures 5.8 and 5.9. Like the case of the benchtop mea-

surements, with so few measurements a curve fit against either method of prediction is

unlikely to yield useful results.

While the degree of anisotropy of the snow sample is unknown, it is known that the

measurements indicate a kz
/

kxy of less than one, which is indicative of the aggregate

anisotropy seen from a geometry of alternating layers, and not of the particular struc-

tural anisotropy that is seen in some types of snow such as depth hoar or or the sort of

anisotropy that could explain the discrepancies between needle probe and guarded hot

plate measurements. This is not surprising, as the measurements were taken in a layered

region in order to increase the chances of detecting anisotropy.

To put the snow measurements in context for comparison in future studies, Table 5.5

shows the snow density in the region of snow that these measurements were taken.

5.5 Ramifications

These results indicate that anisotropy is possible to measure in snow. However, due to

variance between measurements, this may be more difficult than hoped for. While only

two perfect measurements would likely be required to ascertain the anisotropic thermal

conductivity of snow given a proven model, the variance seen in these measurements sug-

gests that many more measurements would be required—somewhere on the order of five

to ten measurements per angle would likely be required for statistically significant results.

However, horizontal measurements do reflect vertical conductivity to a degree, and for
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Figure 5.5: Theoretical predictions for the special case of θ = 0, when the needle is ori-

ented horizontally. Blue points represent numerical solution, while green shows the line

where keff = kz, where measured conductivity and vertical conductivity are the same. The

analytical predictions are indistinguishable from this line, and are therefore not plotted.

small levels of anisotropy (likely if the anisotropy is on the aggregate level only) horizontal

measurements may be sufficient for ascertaining vertical conductivity.

Given that anisotropy was detected in the snowpack, it is possible that snow anisotropy

is responsible for the discrepancies between guarded hot plate measurements and needle

probe measurements. However, because aggregate anisotropy would lead us to predict

higher in-plane conductivity than out-of-plane conductivity, only structural anisotropy can

explain this discrepancy.
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Figure 5.6: A comparison of the benchtop measurements with the numerical and analytical

predictions for alternating layers of salt and sugar, given the calculated anisotropic thermal

conductivity.

Figure 5.7: Upper and lower bounds of 95 % confidence in thermal conductivity measure-

ments of the salt and sugar layered samples. This analysis indicates that the measurements

can not statistically exclude a null hypothesis.
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Table 5.2: Raw data from the benchtop measurements. Note that one of the cooling curve

measurements is striked out. This is because, when examined, it is clearly an outlier. Units

are in W/m·K.

Angle (degrees) # Heating Cooling

90 1 0.223 0.243

2 0.247 0.246

3 0.256 0.318

75 1 0.213 0.224

2 0.233 0.232

3 0.208 0.226

4 0.226 0.238

60 2 0.239 0.244

3 0.226 0.224

4 0.218 0.217

30 1 0.227 0.238

2 0.226 0.247

3 0.221 0.242

4 0.223 0.221

Table 5.3: Basic statistics on normalized benchtop measurements. Units are in W/m·K.

kmeas/ ¯kxy

Angle Mean Standard Deviation 95% Confidence

90 1.000 0.0491 0.0431

75 0.923 0.0419 0.0291

60 0.937 0.0459 0.0367

30 0.949 0.0420 0.0291
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Table 5.4: Conductivity results from the snow measurements. Units are in W/m·K.

Angle Heating Cooling

0 0.0289 0.0321

5 0.0269 0.0244

45 0.0290 0.0327

52 0.0288 0.0326

Table 5.5: Measured and derived measurements for snow density. Units are in W/m·K.

Control Volume 736.76 mL

Mass 161.14 g

Density 0.219 g/mL

219 kg/m3

Figure 5.8: Conductivity measurements in roughly the same layer of snow at various an-

gles. Even a limited amount of in-situ snow measurements suggest a degree of anisotropy.
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Figure 5.9: These boxplots give a general idea of the differences in measurements between

the near-horizontal angle and the more oblique ones in snow.
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Chapter 6

Future Work

6.1 Introduction

This is clearly not the end of research on this method. While the groundwork has been

laid, there are plenty of avenues which need more study.

6.2 Assumptions in the Analytical Approach

In the analytical model presented here, the needle is assumed to be of zero thickness, and

yet an average temperature over an ellipse is taken which represents the needle surface.

The model seems to work relatively well; however, there are other ways to represent such

a problem that may yield more accurate results. For example, one may be able to approach

the problem in terms of a needle with a finite thickness, in which case the solution to the

problem should be an infinite series of Bessel functions in the isotropic case. One may be

able to tackle the problem from a finite-thickness needle approach for better results. In

addition, a refined model could account for edge effects. [Blackwell, 1956]

Another recommendation for future study is to build a hybrid method, which uses

the projection technique developed for the analytical method to specify a 2D problem, but

uses a finite element method to solve the 2D problem. Since this new finite element model

would not account for edge effects, it could be used to help the causes of the discrepancies

between the models. Moreover, since 2D problems are much easier to solve, experiments

may be ran at very high mesh resolutions as compared to the 3D problem.

6.3 Extended Convergence Study

While a convergence study for the numerical model was undertaken, it was relatively

informal, and executed for only one particular configuration of parameters. A more thor-

ough investigation of the convergence properties of the numerical model should likely be

undertaken, especially in light of the 10% error observed in the convergence study done in

this work.
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6.4 Improved Benchtop Method

The benchtop apparatus was based on the use of glycerine and agar gels for calibration.

However, the current anisotropic benchtop method uses sugar and salt. This makes the

proper layering of the materials difficult. Moreover, the device is limited to a tilt factor of

30 degrees from horizontal due to the location of the bottle’s opening. Presumably, this

method could be improved upon to allow for more accurate material layering and for an

increased range of needle angles.

In addition, the materials used only lend themselves to an anisotropy ratio of 87%.

There is plenty of room for improvement, in terms of suitable materials. Figure 6.1 shows

what material conductivity ratios are required to achieve a given anisotropic conductivity

ratio, assuming equal-thickness layers. While salt and sugar fare poorly, real-world mate-

rials have a wide range of conductivities such that two materials with sufficiently different

conductivities should be possible to find.

Figure 6.1: Anisotropic Conductivity Ratio vs. Material Conductivity Ratio for the layered

geometry used in the benchtop experiments. It may take a very large material conductivity

ratio in order to achieve a relatively minor anisotropic conductivity ratio.

6.5 Comprehensive Benchtop Measurements

While enough benchtop measurements were taken to give a vague idea as to the effective-

ness of this measurement technique, there were not nearly enough measurements to give

a statistically valid conclusion regarding the slight trend we were looking for. In addition
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to improving the benchtop method, there need to be many more measurements taken, in

order to draw statistically valid conclusions.

6.6 Comprehensive In-Situ Measurements

The in-situ measurements presented in this document are very limited in scope. One could

easily spend much more time taking more measurements on more snow at more angles,

in order to better quantify the degrees of anisotropy in natural snowpacks. More mea-

surements would allow for a rigorous statistical analysis that can show a trend with high

confidence.

6.7 Exploration of the Cooling Curve

In the numerical and analytical models, the cooling curve is all but ignored. It is believed

that cooling curve models will yield analogous results, but this has not been tested. Be-

cause of the importance of cooling curve measurements in the real world (as they effec-

tively double the number of measurements in a sample and act as a consistency check

on heating curve results), verification of these expectations of analogous behavior should

occur.

6.8 A Method for Determining Anisotropic Thermal Conductivity From Measurements

While this document lays the groundwork for determining anisotropic thermal conductiv-

ity from measurements, a reliable method for converting measurements into anisotropic

thermal conductivities has not been found. This is, in part, due to the discrepancy between

the numerical and analytical approaches to predicting effective thermal conductivity mea-

surements as a function of angle and degree of anisotropy, since the accuracy of the models

is unknown. Moreover, the lack of solid empirical data means that there is no evidence to

support either theory, outside of the isotropic case.

Given a reliable theory and data, one approach for ascertaining thermal conductivity

would be to find the degree of anisotropy for which the data as a function of angle best fits

the predicted keff curves as a function of kxy and kz.

One possibility is that, instead of focusing on the measured conductivities as a function

of angle, that one should focus on the change in measured conductivities with respect to
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angle. This is because, while the actual predicted values for keff disagree, the predicted

percent difference between two measurements may be less so, particularly for instances

of smaller anisotropy ratios. In fact, given low enough degrees of anisotropy, it may be

sufficient to compare linearizations of keff vs. θ curves. Only with more research can this

conjecture be shown to be valid.

One suggestion for collecting data to determine the correct theory is to take measure-

ments at the most extreme angles possible. In the case of measuring conductivity at the

center of the snowpack, 45 degrees from horizontal is about the practical limit. However,

tests conducted at the top of the snowpack would be able to record measurements at 90

degrees from horizontal, the angle at which the other expected extreme value is expected

to occur. Given this data, determining the correct theory may be easier. The author rec-

ommends, in addition to other measurements, that this experiment is conducted in future

research.
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Chapter 7

Conclusions

An analytical model based on the isotropic solution outlined by Carslaw and Jaeger has

been modified in order to predict thermal conductivity measurements of anisotropic ma-

terials as a function of insertion angle. This model uses a linear transformation to pose the

problem in a form equivalent to the isotropic problem. However, in order to get meaning-

ful results, the model requires calculating the average temperature along an ellipse.

A 3-D finite element numerical model has also been built in order to predict thermal

conductivity measurements of anisotropic materials as a function of insertion angle. While

the base model is simple by finite element model standards, the number of parameters

iterated through is somewhat unusual for finite element modeling, and taxes the abilities

of the software used.

According to both numerical and analytical theories, anisotropic thermal conductivity

should cause predictable changes in needle probe heating curve measurements as a func-

tion of angle. While the two models show similar trends, there are significant differences

between the two predictions. These may in part be explained by the 3D model’s handling

of edge effects, and in part due to the numerical model having too coarse of a mesh to

accurately model the problem.

Measurements of engineered anisotropic materials are promising, but far from com-

plete. A basic, repeatable method has been designed and tested. The initial results indicate

the expected trend; however, due to the relatively low amount of anisotropy in the mate-

rial, the variance in measurements of the thermal conductivity measurement method and

a disappointingly low amount of measurements, a null hypothesis is impossible to rule

out.

Similarly, in-situ measurements of snow have been made, but due to difficulties in

snow measurement very few useful data points were collected. However, the results do

indicate anisotropy in the snow. This detected anisotropy is likely due to aggregate effects

of layering, and not due to the structural anisotropy that could potentially explain the

differences between guarded hot plate and needle probe measurements.

Based on these results, anisotropy is likely detectable in snow and possible to de-

termine, though it will require more measurements than perhaps hoped for. If this is
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anisotropy is to explain the discrepancies between guarded hot plate and needle probe

measurements, it must be shown that structural anisotropy in snow is significant enough

not only to explain the guarded hot plate/needle probe discrepancies itself, but also enough

to counteract any anisotropy being caused by layering in snow. This research suggests that

structural anisotropy may be able to explain discrepancies between guarded hot plate mea-

surements and needle probe measurements, though, with a lack of hard date, the answer

to this problem is still unknown. More experiments will be required to know for sure.

Inquiry on this method is far from complete. First, there are significant descrepan-

cies between the analytical and numerical theories which must be resolved. Second, there

are not enough measurements to benchmark either method. Because of these issues, a

suitable, robust method for ascertaining anisotropic thermal conductivity from multiple

needle probe measurements has not been sufficiently developed. Development of such a

method will be instrumental not only in benchmarking the theoretical predictions but also

critical in answering the question of what causes the disagreement between guarded hot

plate and needle probe measurements.
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Appendix A

Code Used for Chapter 2

A.1 model.py

import json

from math import pi

from numpy import log, sin, cos, sqrt, array, \

arange, hstack, linspace, dot

from functools import reduce

def elliptical(fxn, ecc):

from scipy.integrate import quad

from math import pi

from numpy import sin, cos, sqrt

from types import FunctionType, BuiltinFunctionType

#API trickery.

if type(fxn) != FunctionType and type(fxn) != BuiltinFunctionType:

fxn2 = lambda ecc, th: fxn

else:

fxn2 = fxn

#The heavy lifting.

return quad(lambda th: fxn2(ecc,th) *

sqrt( cos(th)**2.0 + (ecc*sin(th))**2.0 ),

0, 2*pi)[0]

def Tavg(k_x, k_y, q, t):

"""

given scalar r0, k_x, k_y and 1-d time, this returns a curve with

the same slope at Tavg(t) for long T. May refactor.

"""

return (4*pi*k_x/q)*array([elliptical(log(time) , k_x/k_y)/

elliptical(1, k_x/k_y) for time in t])

def kmeas(k_x, k_y, q, t):
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from numpy import polyfit

"""

Does a quick linear curve fit

"""

return (q/4/pi)*polyfit(log(t), Tavg(k_x, k_y, q, t), 1)[0]

def rot(th, axis):

from numpy.linalg import norm

from numpy import sin, cos, eye, outer, cross

if axis == "x":

axis = array([1,0,0])

elif axis == "y":

axis = array([0,1,0])

elif axis == "z":

axis = array([0,0,1])

else:

axis = axis/norm(axis)

oh = outer(axis, axis)

return oh + cos(th)*(eye(3) - oh) + sin(th)*cross(axis, eye(3))

def proj(matrix, rot):

from numpy import eye, hstack, vstack, newaxis

from numpy.linalg import eig

return tuple(

eig(

reduce( dot, [ vstack((

hstack((

eye(2),

array([0, 0])[:, newaxis] )),

array([0, 0, 0]))),

rot,

matrix,

rot.T ]))[0])[0:2]
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if __name__=="__main__":

from numpy import diag, logspace, meshgrid

from math import pi

from progressbar import ProgressBar

angles = range(0, 91) # Lots angles :D

ks = arange(0.2, 0.4, 0.05) # Some ks

(k_xy, k_z) = meshgrid(ks, ks)

k_xy = k_xy.flatten()

k_z = k_z.flatten()

q = 0.5 #Like in sims

t = hstack(( logspace(0.1,1.0,15),

logspace(1.0,3.0,15) ))

results = []

progress = ProgressBar()

for th in progress(angles):

for i in xrange(k_xy.shape[0]):

(k_xp, k_yp) = proj( diag([k_xy[i], k_xy[i], k_z[i]]),

rot(pi/180*(90-th), ’y’))

results.append([ th,

k_z[i]/k_xy[i],

kmeas(k_xp, k_yp, q, t)/k_xy[i]])

for row in results:

print(’, ’.join(map(str, row)))
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Appendix B

Code Used for Chapter 3

B.1 worker.m

%worker.m

%does the working

function worker(kxy,kz)

load(’angles.mat’, ’angles’);

angles

[kxy,kz] = meshgrid(kxy,kz);

% The commented-out ‘‘flreport’’ gives one the option of suppressing

% graphical output from COMSOL. This is useful if one wants to run

% COMSOL in a headless manner. Unfortunately, COMSOL 3.5a on the ARSC

% systems has extreme difficulties running in headless batch mode.

%flreport(’off’);

params=struct(’rsnow’, 0.4, ...

’rneedle’, 0.00025, ...

’lneedle’, 0.1, ...

’density_snow’, 200, ...

’density_needle’, 8000, ...

’cp_snow’, 2050, ...

’cp_needle’, 460, ...

’q_needle’, 0.5, ...

’k_needle’, 160, ...

’time’, [logspace(0.1,1,15) logspace(1,3,15)], ...

’angles’, angles );

saveroot=[’./solutions-’ date ’/’];

mesh = mesher(0,params);

for angle=angles,

try

solutions = arrayfun(@(x,y) solver(x,y,mesh,angle,params), ...



48

kxy,kz, ’UniformOutput’, false);

save solutions

fprintf(’Fitting solutions...\n’);

solutions = {cellfun(@(tsd) {fitter(tsd{1}(1,:),tsd{1}(2,:), ...

0.999,params), ...

tsd{1}, tsd{2}}, ...

solutions, ’UniformOutput’, false)};

fprintf(’A solution set just completed.’);

system([ ’echo "A solution set finished on" ‘hostname‘ ’ ...

’| mutt -s "A solution set completed." ’ ...

’josh.holbrook@gmail.com’ ]);

catch exception

system([ ’echo "Exception occurred on" ‘hostname‘ ’ ...

’| mutt -s "Exception occurred--’ exception.message ...

’" josh.holbrook@gmail.com’ ]);

end

angles = angles(2:length(angles));

save(’angles.mat’, ’angles’);

%solutions

mkdir(saveroot);

save([ saveroot ’solution-’ num2str(angle) ], ...

’solutions’,’angle’,’kxy’,’kz’,’params’);

end

% Emails me when everything’s done

system([ ’echo "Results completed on " ‘hostname‘ ’ ...

’| mutt -s "Results Completed" ’ ...

’josh.holbrook@gmail.com’ ]);

system(’touch down’);

end

B.2 mesher.m

% COMSOL Multiphysics Model M-file

% Generated in part by COMSOL 3.5a

% (COMSOL 3.5.0.608, $Date: 2009/05/11 07:38:49 $)
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% the rest of it modified by Joshua Holbrook

function fem=mesher(angle,params)

% mesh_generate(angle)

% generates a mesh for the given angle.

fprintf([’meshing for angle=’ num2str(angle) ’...\n’]);

flclear fem

% COMSOL version

clear vrsn

vrsn.name = ’COMSOL 3.5’;

vrsn.ext = ’a’;

vrsn.major = 0;

vrsn.build = 608;

vrsn.rcs = ’$Name: v35ap $’;

vrsn.date = ’$Date: 2009/05/11 07:38:49 $’;

fem.version = vrsn;

% Geometry

g1=sphere3(num2str(params.rsnow), ...

’pos’,{’0’,’0’,’0’}, ...

’axis’,{’0’,’0’,’1’}, ...

’rot’,’0’);

g2=cylinder3(num2str(params.rneedle), ...

num2str(params.lneedle), ...

’pos’,{num2str(-params.lneedle/2),’0’,’0’}, ...

’axis’,{’1’,’0’,’0’}, ...

’rot’,’0’);

parr={point3(0,0,0)};

g3=geomcoerce(’point’,parr);

parr={point3(params.rsnow,0,0)};

g4=geomcoerce(’point’,parr);

parr={point3(0,params.rsnow,0)};

g5=geomcoerce(’point’,parr);
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parr={point3(0,0,params.rsnow)};

g6=geomcoerce(’point’,parr);

parr={point3(-params.rsnow,0,0)};

g7=geomcoerce(’point’,parr);

parr={point3(0,-params.rsnow,0)};

g8=geomcoerce(’point’,parr);

parr={point3(0,0,-params.rsnow)};

g9=geomcoerce(’point’,parr);

% Analyzed Geometry (?)

clear p s

p.objs={g3,g4,g5,g6,g7,g8,g9};

p.name={’ORIGIN’,’PT1’,’PT2’,’PT3’,’PT4’,’PT5’,’PT6’};

p.tags={’g3’,’g4’,’g5’,’g6’,’g7’,’g8’,’g9’};

s.objs={g1,g2};

s.name={’SNOW’,’NEEDLE’};

s.tags={’g1’,’g2’};

fem.draw=struct(’p’,p,’s’,s);

fem.geom=geomcsg(fem);

% ODE Settings

clear ode

clear units;

units.basesystem = ’SI’;

ode.units = units;

fem.ode=ode;

% Initialize mesh

fem.mesh=meshinit(fem, ...

’hauto’,5, ...

’hgradsub’,[2,1.1], ...
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’hmaxsub’,[2,0.0005]);

% Refine mesh

fem.mesh=meshrefine(fem, ...

’mcase’,0, ...

’rmethod’,’longest’);

fem=multiphysics(fem);

end

B.3 solver.m

% COMSOL Multiphysics Model M-file

% Generated by COMSOL 3.5a

% (COMSOL 3.5.0.608, $Date: 2009/05/11 07:38:49 $)

function answer=solver(kxy,kz,fem,theta,params)

% solver(kxy,kz,mesh,params)

% uses comsol to pump out a solution using a given mesh-mat

% and a k-matrix in comsol format.

fprintf([’solving for kxy=’ num2str(kxy) ...

’ and kz=’ num2str(kz) ’...\n’]);

% Application mode 1

clear appl

appl.mode.class = ’GeneralHeat’;

appl.module = ’HT’;

appl.shape = {’shlag(1,’’J’’)’,’shlag(2,’’T’’)’};

appl.sshape = 2;

appl.assignsuffix = ’_htgh’;

clear bnd

bnd.type = {’q0’,’cont’};

bnd.shape = 1;

bnd.ind = [1,1,1,1,2,2,2,2,2,1,1,1,1,2];

appl.bnd = bnd;

clear equ
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equ.sdtype = ’gls’;

% densities

equ.rho = {params.density_snow,params.density_needle};

equ.init = 0;

equ.shape = 2;

% Heat capacities

equ.C = {params.cp_snow,params.cp_needle};

% Wattage

equ.Q = {0,params.q_needle/pi/(params.rneedle)ˆ2};

% Heat conductivities

arr = [cos(theta*pi/180), 0, sin(theta*pi/180);

0, 1, 0;

-sin(theta*pi/180), 0, cos(theta*pi/180)]; %rotation matrix

equ.k = {symmetric_tocell( ...

arr*diag([kxy,kxy,kz])*(arr’)), ...

params.k_needle};

equ.ind = [1,2];

appl.equ = equ;

fem.appl{1} = appl;

fem.frame = {’ref’};

fem.border = 1;

fem.outform = ’general’;

clear units;

units.basesystem = ’SI’;

fem.units = units;

% Coupling variable elements

clear elemcpl

% Integration coupling variables

clear elem

elem.elem = ’elcplscalar’;

elem.g = {’1’};

src = cell(1,1);

clear bnd

bnd.expr = {{’T’,{}},{’1’,{}}};
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bnd.ipoints = {{’4’,{}},{’4’,{}}};

bnd.frame = {{’ref’,{}},{’ref’,{}}};

bnd.ind = {{’1’,’2’,’3’,’4’,’10’,’11’,’12’,’13’}, ...

{’5’,’6’,’7’,’8’,’9’,’14’}};

src{1} = {{},{},bnd,{}};

elem.src = src;

geomdim = cell(1,1);

geomdim{1} = {};

elem.geomdim = geomdim;

elem.var = {’int_T’,’area’};

elem.global = {’1’,’2’};

elemcpl{1} = elem;

fem.elemcpl = elemcpl;

% ODE Settings

clear ode

clear units;

units.basesystem = ’SI’;

ode.units = units;

fem.ode=ode;

% Multiphysics

fem=multiphysics(fem);

% Generate GMG mesh cases

fem=meshcaseadd(fem,’mgauto’,’anyshape’);

% Extend mesh

fem.xmesh=meshextend(fem);

% Solve problem

fem.sol=femtime(fem, ...

’solcomp’,{’T’}, ...

’outcomp’,{’T’}, ...

’blocksize’,’auto’, ...
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’tlist’, params.time, ...

’estrat’,1, ...

’tout’,’tlist’, ...

’linsolver’,’gmres’, ...

’itrestart’,100, ...

’prefuntype’,’right’, ...

’prefun’,’gmg’, ...

’prepar’,{’presmooth’,’ssor’,’presmoothpar’,{’iter’,3,’relax’,0.8},’postsmooth’,’ssor’,’postsmoothpar’,{’iter’,3,’relax’,0.8},’csolver’,’pardiso’}, ...

’stopcond’,’0.06-int_T/area’, ...

’mcase’,[0 1]);

% Save current fem structure for restart purposes

fem0=fem;

% Plot solution

%{

postplot(fem, ...

’slicedata’,{’T’,’cont’,’internal’,’unit’,’K’}, ...

’slicexspacing’,5, ...

’sliceyspacing’,0, ...

’slicezspacing’,0, ...

’slicemap’,’Rainbow’, ...

’solnum’,’end’, ...

’title’,’Time=100 Slice: Temperature [K]’, ...

’grid’,’on’, ...

’campos’,[-2.636014311828346, ...

-3.4353207343472505, ...

2.4999999999999996], ...

’camtarget’,[0,0,0], ...

’camup’,[0,0,1], ...

’camva’,41.213465344831754);

%}

% Integrate

T_thermistor=postint(fem,’T’, ...
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’unit’,’K’, ...

’recover’,’off’, ...

’dl’,8, ...

’edim’,0, ...

’solnum’,’all’);

% Integrate

T_surf_avg=postint(fem,’T’, ...

’unit’,’’, ...

’recover’,’off’, ...

’dl’,[1,2,3,4,10,11,12,13], ...

’edim’,2, ...

’solnum’,’end’);

answer={[fem.sol.tlist; T_thermistor],T_surf_avg};

angles = params.angles(2:length(params.angles));

%flsave([’fem-’ num2str(theta) ’-’ num2str(kxy) ...

% ’-’ num2str(kz) ’.mph’]);

save(’angles.m’, ’angles’);

end

B.4 fitter.m

function k = fitter(t,T,rset,params)

logt = log(t(t>1));

T = T(t>1);

disp(’Finding linear portion...’);

for i=1:length(logt)-1

C = corrcoef(logt(i:length(logt)), T(i:length(T)));

r = sqrt(C(2,1));

if r > rset %adjust this to get ’good’ values

disp([’linear fitting to ’ num2str((length(logt)-i)) ...

’ points from t=’ num2str(exp(logt(i))) ...
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’ to t=’ num2str(exp(logt(length(logt)))) ’...’]);

x = polyfit(logt(i:length(logt)),T(i:length(T)), 1);

break

end

end

%plot(logt,T,’*’);

%hold on;

%plot(logt, x(1)*logt + x(2));

k = (params.q_needle)/(4*pi*x(1));

end

B.5 assembler.m

function answers=assembler(directory)

cd(directory);

d = dir();

answers = [];

for i=3:length(d),

disp([’Opening ’ d(i).name ’...’]);

load(d(i).name);

answers = [answers, solutions];

end

cd(’..’);

end

B.6 reFitter.m

function fixed=reFitter(broked, r, params)

fixed = broked;

for i=1:length(fixed),

fixed{i} = cellfun(@(kset) { ...

fitHelper(kset{2}, r, params), ...

kset{2}, kset{3}}, fixed{i}, ’UniformOutput’, false);

end

end
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function fitted=fitHelper(tT, r, params)

fitted = fitter(tT(1,:),tT(2,:),r, params);

end

B.7 analyzer.m

%analyzer

%Does some analyzing of the simulation results

%breaks for [kxy,kz] != meshgrid(ks,ks)

%Solutions location

%load solutions-19-Sep-2010/solutions-all.mat;

%Things I already know :)

%ks = linspace(0.2, 0.4, 6);

%ks = [0.2,0.4];

%[kxy, kz] = meshgrid(ks, ks);

%[kzy, kz] = meshgrid(0.3, 0.5);

%ks = 1;

%angles = 0:15:90;

%angles = 0:5:90;

%angles = [0 90];

%For an obvious color gradient, from red to blue right now.

colores = @(i,n) [sin((i/n)*pi/2), 0, cos((i/n)*pi/2)];

disp([’Showing overlaid plots (YES ALL OF THEM)’ ...

’ to make sure they "look" right:’]);

figure;

hold on;

for theta = 1:length(angles)

for i=1:length(ks)ˆ2

tT = answers{theta}{i}{2};
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plot(log(tT(1,tT(1,:) > 1 )),tT(2,tT(1,:) > 1), ...

’color’, colores(i,length(ks)ˆ2));

end

end

disp(’Sanity checking results for isotropic cases’);

figure;

hold on;

kmsold = 0 * cellfun(@(prison) prison{1}, answers{1});

for i=1:length(angles)

%Extracts all the measured k’s from the data

% "prison" refers to cell representing particular

% k combination in answers{theta}

kms = cellfun(@(prison) prison{1}, answers{i});

if kms == kmsold,

disp(’wtf exactly equivalent kms’’s’);

end

%diag(kms)

%diag(kxy)

errs = 100*(diag(kms) - diag(kxy))./diag(kxy);

%Not necessary to be 3d anymore :)

plot3(diag(kxy), errs, angles(i)*ones(size(diag(kxy))), ...

’*-’, ’color’, colores(i,length(angles)) );

xlabel(’k_{actual}’);

ylabel(’error (%)’);

zlabel(’angle (degrees)’);

end

disp(’Figuring out T_surf_avg at time T:’);

%figure;

%hold on;

for theta=1:length(angles)

tavgs = cellfun(@(prison) prison{3}, answers{theta});

try

assert(all(all(tavgs< 0.001)));
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catch

disp([’Warning: average surface temps are a bit high’ ...

’ at theta=’ num2str(angles(theta))] );

disp(tavgs);

end

if theta == length(angles)

figure;

hold on;

contourf(kxy,kz,tavgs);

colorbar;

colormap(’pink’);

title([’Average Surface Temperature at End of ’...

’Heating Curve Simulation for a representative angle’);

xlabel(’K_{xy}’);

ylabel(’K_{zz}’);

end

end

%dimensions changed to be in order kxy, then

%rows are angle and columns are kzz

disp(’Plotting k_{meas}/k_{xy} vs. \theta and k_{z}/k_{xy}...’);

kms=cell(size(ks));

for i=1:length(angles)

kmsbyangle = cellfun(@(prison) prison{1}, answers{i});

for j=1:length(ks)

%Normalize by particular kxy

kms{j} = [kms{j}; kmsbyangle(:,j)’/ks(j)];

end

end

figure;

hold on;

[kgrid, anggrid] = meshgrid(ks, angles);

for n=1:length(ks)

x = reshape(anggrid’,[],1), reshape(kgrid’/ks(n),[],1)

y = reshape(kms{n}’,[],1)
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plot3(x, y, ’*-’, ’color’, colores(n, length(ks)));

end

%legend(arrayfun(@(x) num2str(x),ks, ’UniformOutput’, false));

xlabel(’angle (degrees)’);

ylabel(’k_{zz}/k_{xy}’);

zlabel(’k_{meas}/k_{xy}’);

B.8 tabulator.m

%tabulator

%turns lame structures into some csv action

%given params:

% answers

% angles

% kxy

% kz

% Bad style, but I’m dealing with a cluttered namespace

% because I’m not functionalizing these.

% This is because parameter passing is annoying. So, leave me alone.

[Kxy, Kz] = meshgrid(kxy, kz);

fprintf(’angle, kxy, kz, kmeas \n’);

for t=1:length(angles),

for pt=1:size(Kxy,1)*size(Kxy,2),

fprintf([ num2str(angles(t)) ’, ’ ...

num2str(Kxy(pt)) ’, ’ ...

num2str(Kz(pt)) ’, ’ ...

num2str(answers{t}{pt}{1}) ’\n’]);

end

end

B.9 symmetric tocell.m

function a=symmetric_tocell(A)

% Converts a symmetric matrix A into a cell
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% containing the values, comsol-style.

% I need to make sure comsol likes them nx1 instead of 1xn.

%test for squareness

assert(size(A,1)==size(A,2), ...

’Dawg that matrix aint square much less symmetric’);

%test for symmetry

for i=1:size(A,1),

for j=i:size(A,1),

if (A(i,j)˜=A(j,i)),

disp([’Warning: Dawg that matrix aint square (A(’ ...

int2str(i) int2str(j) ’)=’ num2str(A(i,j)) ...

’ != A(’ int2str(j) int2str(i) ...

’)=’ num2str(A(j,i)) ’ ! )’]);

end

end

end

%The actual heavy lifting.

a={};

for m=1:size(A,1),

%Takes upper-triangular section of mth column

for element=A(1:m,m)’

a{size(a,1)+1,1}=element;

end

end

end

function t=triangle(n)

t=(nˆ2+n)/2;

end
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Appendix C

Code Used for Chapter 4

C.1 testtools.py

“testtools.py” is a loose port of code written by Dr. Matthew Sturm for IGOR Pro to do a

similar analysis.

from __future__ import division

import tablib

from math import pi

# csv.reader and tablib aren’t smart enough to read in numbers as

# numbers. Therefore, I map this over the strings in the rows spat

# out by csv.reader.

def str2num(string):

import re

if re.match(’ˆ-?\d*\.\d*$’, string):

return float(string)

elif re.match(’ˆ-?\d+$’, string):

return int(string)

else:

return string

def import_raw_data(filename):

import csv

data = tablib.Dataset()

for row in csv.reader(open(filename, ’r’)):

data.append( map(str2num, row) )

data.headers = ( ’logger_id’

, ’day’

, ’hourmin’
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, ’sec’

, ’needletemp’

, ’reftemp’

, ’volts’

, ’timer’)

return data

def unique(col):

return list(set(col))

# Time is kept in two ints: one of the form hhmm, and the other in s.

# This function converts those to absolute seconds, and rebuilds the

# table appropriately.

def hms_to_s(data):

# This bit here converts hhmm to seconds and adds to s.

# It doesn’t account for changes in the julian days.

# Just don’t test @ midnight, I guess.

def convert(hourmin, sec):

return 60*(hourmin%100) + sec + 3600*(hourmin//100 )

def sieve(st):

return (st != ’hourmin’) and (st != ’sec’)

sec = map(lambda t: convert(t[0], t[1]),

zip(data[’hourmin’], data[’sec’]))

new_data = zip(sec, *map( lambda h: data[h],

filter(sieve, data.headers) ))

new_headers = [’sec’]+filter(sieve, data.headers)

return tablib.Dataset(*new_data, headers=new_headers)

def tab_filter(data, header, testfxn):
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new_data = [];

for (i, pt) in enumerate(data[header]):

if testfxn(pt):

new_data.append(data[i])

return tablib.Dataset(*new_data, headers=data.headers)

def tab_pprint(data):

width = 2 + max(map(lambda st: len(st), data.headers))

def padder(st):

l = len(str(st))

return st + (width-l)*" " if l <= width else st[:width]

print " | ".join(map(padder,data.headers))

print "-"*((width+2)*len(data.headers)-1)

for row in data:

print " | ".join(map(padder,map(str,row)))

def tab_plot(data, x_header, y_headers = None, fit=None ):

import matplotlib.pyplot as pyplot

headers = filter(lambda h: h != x_header, data.headers

if y_headers == None else y_headers)

xs = [ data[x_header] for header in headers ]

ys = [ data[header] for header in headers]

if (fit != None):

from numpy import arange, exp, log, polyval

more_xs = arange(data[x_header][1],data[x_header][-1])

more_ys = polyval(fit,log(more_xs))

xs+=[more_xs]
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ys+=[more_ys]

pyplot.semilogx(*reduce(lambda a, b: a+b, zip(xs,ys)))

pyplot.xlabel(x_header)

pyplot.ylabel(’Everything Else’)

pyplot.show()

return data

#Repeats code from hms_to_s, or whatever I called that fxn.

#Ideally, I would generalize the ideas of, "do something with

#these columns, generate THIS column" and "Get rid of these

#columns.

def relative_time(data, h_abs="sec", h_rel="sec"):

from numpy import array

t_actual = data[h_abs]

t_zero = t_actual[0]

t_relative = list(array(t_actual) - t_zero)

def sieve(st):

return (st != h_abs)

new_data = zip(t_relative, *map( lambda h: data[h],

filter(sieve, data.headers) ))

new_headers = [h_rel]+filter(sieve, data.headers)

return tablib.Dataset(*new_data, headers=new_headers)

#A class of tools for splitting data up

class Splitters(object):
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#You change your mind like a girl changes clothes!

@staticmethod

def hot_and_cold(data):

from numpy import array, floor

from scipy.optimize import curve_fit

def fit(x, a, b, c):

y = map(lambda x: (b if (x-a) > 0 else 0) - c, x)

return array(y)

split = int(floor(curve_fit(fit,

data[’sec’],

data[’volts’],

( 0.5*(data[’sec’][0]+data[’sec’][1]),

data[’volts’][0],

0 ))[0][0]))

hot = tablib.Dataset( *data[slice(None, split, None)],

headers=data.headers)

cold = tablib.Dataset( *data[slice(split, None, None)],

headers=data.headers)

return ( hot, cold )

@staticmethod

def manual(data, header, value):

a = tab_filter(data, header, lambda x: x < value)

b = tab_filter(data, header, lambda x: x >= value)

return (a, b)

def linreg(data, xheader = ’sec’, yheader = ’needletemp’ ):

from numpy import polyfit, log

return polyfit(log(data[xheader][1:]), data[yheader][1:], 1)
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def q(data):

from numpy import average

# I’m not sure what these constants mean, but based on the equation

# I can make a pretty good guess!

r_r = 10.6 #needle radius?

r_h = 142.2 #resistance?

l = 0.120 #needle length?

volts = float(average(data[’volts’]))

return ((volts/1000)**2.0 * r_h) / (l*r_r**2.0)

def heating_curve(data, q):

const = linreg(data)[0]

return q/4.0/pi/float(const)

def cooling_curve(cool_data, q):

const = linreg(cool_data)[0]

return -q/4/pi/float(const)

#applies mcgaw cooling curve. Untested.

def mcgaw(data, k_hot, q_hot, hot_period):

from math import exp, log, pi

correction = 4*pi*q_hot*k_hot*log( (exp(data[’sec’][-1])+ hot_period) /

hot_period)

#print data[’sec’][-1]

#print hot_period
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#print correction

newtemps = map( lambda x: x - correction, data[’needletemp’])

new_data = [];

new_headers = data.headers

for header in data.headers:

if header == ’needletemp’:

#print "ding!"

new_data.append(newtemps)

else:

new_data.append(data[header])

#transposition!

new_data = zip(*new_data)

return tablib.Dataset(*new_data, headers=new_headers)

#Lachenbruch’s Time Correction from a 1957 paper.

#Haven’t been able to find said paper. Whatever.

def lachenbruch(data, dt):

from numpy import exp, log

data[’needletemp’] = list(log(exp(data[’needletemp’]) - dt))

return data
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Appendix D

Raw Results of Numerical Model

Table D.1: θ = [0 : 5 : 90], [kxy,kz] = [0.3,0.5]

Angle (degrees) kxy kz kmeas

0 0.3 0.5 0.42503

5 0.3 0.5 0.42439

10 0.3 0.5 0.42439

15 0.3 0.5 0.41927

20 0.3 0.5 0.41927

25 0.3 0.5 0.41927

30 0.3 0.5 0.40758

35 0.3 0.5 0.40047

40 0.3 0.5 0.39267

45 0.3 0.5 0.38462

50 0.3 0.5 0.37641

55 0.3 0.5 0.37196

60 0.3 0.5 0.36418

65 0.3 0.5 0.36418

70 0.3 0.5 0.35754

75 0.3 0.5 0.35574

80 0.3 0.5 0.35574

85 0.3 0.5 0.35574

90 0.3 0.5 0.3589
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Table D.2: θ = 0, [kxy,kz] = meshgrid(linspace(0.2,0.4,4), linspace(0.2,0.4,4))

Angle (degrees) kxy kz kmeas

0 0.2 0.2 0.21614

0 0.2 0.26667 0.2492

0 0.2 0.33333 0.28009

0 0.2 0.4 0.30801

0 0.26667 0.2 0.25315

0 0.26667 0.26667 0.29095

0 0.26667 0.33333 0.32668

0 0.26667 0.4 0.35519

0 0.33333 0.2 0.28594

0 0.33333 0.26667 0.32836

0 0.33333 0.33333 0.36839

0 0.33333 0.4 0.40493

0 0.4 0.2 0.31911

0 0.4 0.26667 0.36629

0 0.4 0.33333 0.40706

0 0.4 0.4 0.44717
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Table D.3: θ = [30 : 15 : 90], kxy = 0.3, kz = [0.1 : 0.1 : 0.5]

Angle (degrees) kxy kz kmeas

30 0.3 0.1 0.23

30 0.3 0.2 0.28322

30 0.3 0.3 0.3296

30 0.3 0.4 0.3704

30 0.3 0.5 0.40758

45 0.3 0.1 0.26424

45 0.3 0.2 0.29853

45 0.3 0.3 0.3296

45 0.3 0.4 0.35806

45 0.3 0.5 0.38462

60 0.3 0.1 0.29307

60 0.3 0.2 0.31317

60 0.3 0.3 0.3296

60 0.3 0.4 0.34888

60 0.3 0.5 0.36418

75 0.3 0.1 0.31449

75 0.3 0.2 0.32006

75 0.3 0.3 0.3296

75 0.3 0.4 0.33925

75 0.3 0.5 0.35574

90 0.3 0.1 0.32201

90 0.3 0.2 0.32375

90 0.3 0.3 0.3296

90 0.3 0.4 0.33566

90 0.3 0.5 0.3589
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Table D.4: θ = [0 : 30 : 90], kxy = 0.3, kz = [0.1,0.5]

Angle (degrees) kxy kz kmeas

0 0.3 0.1 0.19287

0 0.3 0.5 0.42503

30 0.3 0.1 0.23

30 0.3 0.5 0.40758

60 0.3 0.1 0.29307

60 0.3 0.5 0.36418

90 0.3 0.1 0.32201

90 0.3 0.5 0.3589

Table D.5: θ = [5 : 5 : 15], kxy = 0.3, kz = [0.1,0.5]

Angle (degrees) kxy kz kmeas

5 0.3 0.1 0.19429

5 0.3 0.5 0.42439

10 0.3 0.1 0.19643

10 0.3 0.5 0.42247

15 0.3 0.1 0.20301

15 0.3 0.5 0.41927
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Appendix E

Needle Probe Apparatus Directions

E.1 Taking A Measurement

The apparatus is controlled using a keypad that enables one to communicate with the data

logger using Campbell “star-codes.” Initiating a test is a matter of clearing and setting

some registers using these star-codes.

In general, the apparatus is used like so:

1. Turn on the device.

2. Insert the needle into medium being measured.

3. Use star-codes to clear the first three registers. “* 6 A” accesses the registers, and “D

n” toggles the nth register. For example, to clear the second register, press “* 6 A D

2” .

4. Turn on the first register by pressing “* 6 A D 1”. This makes the apparatus measure

temperature.

5. Turn on the second register by pressing “* 6 A D 2”. This turns on the heating ele-

ment, effectively starting the test.

6. Wait 20 minutes for test to complete.

E.2 CSV Headers

Data from the Campbell instrument comes in the form of a .csv file. For this particular

experiment, the columns (from left to right) represent:

1. An instrument ID (constant in this case).

2. Ordinal day, out of 366. For example, March 17th is day 76.

3. hh:mm portion of timestamp. For example, 6:30pm is represented as 1830.

4. Seconds portion of timestamp.

5. Needle temperature, in Celcius.
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6. Reference temperature, in Celcius.

7. Voltage across needle probe, in millivolts.

8. Experiment timer, in seconds.


