forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
library.h
1050 lines (959 loc) · 39.3 KB
/
library.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#pragma once
/// \file
///
/// This header provides an API for extending PyTorch's core library
/// of operators with user defined operators and data types. This
/// API can be used in a few ways:
///
/// * You can define new custom operators and classes with TORCH_LIBRARY(),
/// making them available for use in both eager Python as well as in
/// TorchScript. This API is modeled off of pybind11's `PYBIND11_MODULE`
/// macro, as the provided functionality is similar (pybind11 lets you bind
/// C++ to Python only; `torch/library.h` lets you bind C++ simultaneously to
/// Python and TorchScript).
///
/// * You can override existing operators with TORCH_LIBRARY_IMPL(),
/// providing a new implementation for these operators for a custom
/// backend (e.g., XLA). When you pass operators with tensors of your custom
/// backend, your overridden implementations will be called instead
/// of the standard implementations.
///
/// * You can use both capabilities at the same time, allowing you
/// to write custom operators that register CPU/CUDA/Autograd
/// implementations without having to write the boilerplate
/// conditionals yourself.
///
/// For a tutorial style introduction to the library API, check
/// out the [Extending TorchScript with Custom C++
/// Operators](https://pytorch.org/tutorials/advanced/torch_script_custom_ops.html)
/// tutorial.
///
/// ```
/// // Define a library whose operators live in the namespace 'myops'.
/// // You must define all of the operators for this library in
/// // this namespace.
/// TORCH_LIBRARY(myops, m) {
/// // Define a operator with exactly one implementation for all backends.
/// m.def("add(Tensor self, Tensor other) -> Tensor", &add_impl);
///
/// // Define a schema for an operator, but provide no implementation
/// // (use this syntax if you want to use the dispatcher)
/// m.def("mul(Tensor self, Tensor other) -> Tensor");
///
/// // Provide an implementation for a defined operator (you can
/// // provide multiple; one per backend). The dispatcher takes care of
/// // calling the correct implementation depending on if we get a CPU
/// // tensor or a CUDA tensor
/// m.impl("mul", torch::kCPU, &mul_cpu_impl);
/// m.impl("mul", torch::kCUDA, &mul_cuda_impl);
/// }
///
/// // Define implementations for operators for a non-standard backend,
/// // e.g., XLA (valid values are entries of DispatchKey). This can
/// // be used to define operators in a different file than the initial
/// // TORCH_LIBRARY definition (e.g., if it is in an external library)
/// TORCH_LIBRARY_IMPL(myops, XLA, m) {
/// m.impl("mul", &mul_xla_impl);
/// }
/// ```
#include <ATen/core/op_registration/infer_schema.h>
#include <ATen/core/op_registration/op_allowlist.h>
#include <ATen/core/dispatch/Dispatcher.h>
#include <c10/core/DispatchKey.h>
#include <torch/csrc/jit/frontend/function_schema_parser.h>
// Just for inferFunctionSchemaFromFunctor
#include <ATen/core/enum_tag.h>
#include <ATen/core/op_registration/op_registration.h>
namespace torch {
#if defined C10_MOBILE
/**
* The NoInferSchemaTag is a type name used to indicate that this call to the
* CppFunction constructor should not trigger schema inference from functor.
* Schema inference from functor utilizes template meta-programming, and is
* costly from a size perspective. Ideally, one would expect that the schema
* inference would require very little binary size since most of the
* computation can be done by the compiler at build time, but that isn't
* necessarily the case.
*
* Schema inference is elided only for mobile use-cases where we don't need
* the additional runtime cost or size overhead on client devices.
*
*/
struct NoInferSchemaTag {};
#endif
#define HAS_PT2_COMPLIANT_TAG
// For multipy/torchdeploy use case
enum class _RegisterOrVerify { REGISTER, VERIFY };
template <class CurClass>
class class_;
#define HAS_IMPL_ABSTRACT_PYSTUB
/// Represents a C++ function that implements an operator. Most users won't
/// interact directly with this class, except via error messages: the
/// constructors this function define the set of permissible "function"-like
/// things you can bind via the interface.
///
/// This class erases the type of the passed in function, but durably records
/// the type via an inferred schema for the function.
class TORCH_API CppFunction final {
// TODO: This is morally the same thing as KernelRegistrationConfig, but it's
// opaque to the user.
public:
/// This overload accepts function pointers, e.g., `CppFunction(&add_impl)`
template <typename Func>
explicit CppFunction(
Func* f,
std::enable_if_t<
c10::guts::is_function_type<Func>::value,
std::nullptr_t> = nullptr)
: func_(c10::KernelFunction::makeFromUnboxedRuntimeFunction(f)),
cpp_signature_(c10::impl::CppSignature::make<Func>()),
schema_(
c10::detail::inferFunctionSchemaFromFunctor<std::decay_t<Func>>()),
debug_() {}
/// This overload accepts compile time function pointers, e.g.,
/// `CppFunction(TORCH_FN(add_impl))`
template <typename FuncPtr>
explicit CppFunction(
FuncPtr f,
std::enable_if_t<
c10::is_compile_time_function_pointer<FuncPtr>::value,
std::nullptr_t> = nullptr)
: func_(c10::KernelFunction::makeFromUnboxedFunction(f)),
cpp_signature_(
c10::impl::CppSignature::make<typename FuncPtr::FuncType>()),
schema_(c10::detail::inferFunctionSchemaFromFunctor<
typename FuncPtr::FuncType>()),
debug_() {}
/// This overload accepts lambdas, e.g., `CppFunction([](const Tensor& self) {
/// ... })`
template <typename Lambda>
explicit CppFunction(
Lambda&& f,
std::enable_if_t<
c10::guts::is_functor<std::decay_t<Lambda>>::value,
std::nullptr_t> = nullptr)
: func_(c10::KernelFunction::makeFromUnboxedLambda(
std::forward<Lambda>(f))),
cpp_signature_(c10::impl::CppSignature::make<Lambda>()),
schema_(c10::detail::inferFunctionSchemaFromFunctor<
std::decay_t<Lambda>>()),
debug_() {}
#if defined C10_MOBILE
/// This overload accepts function pointers, e.g., `CppFunction(&add_impl,
/// NoInferSchemaTag())`
template <typename Func>
explicit CppFunction(
Func* f,
NoInferSchemaTag,
std::enable_if_t<
c10::guts::is_function_type<Func>::value,
std::nullptr_t> = nullptr)
: func_(c10::KernelFunction::makeFromUnboxedRuntimeFunction(f)),
cpp_signature_(c10::impl::CppSignature::make<Func>())
// TODO: Don't go through WrapRuntimeKernelFunctor
,
schema_(nullptr),
debug_() {}
/// This overload accepts compile time function pointers, e.g.,
/// `CppFunction(TORCH_FN(add_impl), NoInferSchemaTag())`
template <typename FuncPtr>
explicit CppFunction(
FuncPtr f,
NoInferSchemaTag,
std::enable_if_t<
c10::is_compile_time_function_pointer<FuncPtr>::value,
std::nullptr_t> = nullptr)
: func_(c10::KernelFunction::makeFromUnboxedFunction(f)),
cpp_signature_(
c10::impl::CppSignature::make<typename FuncPtr::FuncType>())
// TODO: Don't go through WrapRuntimeKernelFunctor
,
schema_(nullptr),
debug_() {}
/// This overload accepts lambdas, e.g., `CppFunction([](const Tensor& self) {
/// ... }. NoInferSchemaTag())`
template <typename Lambda>
explicit CppFunction(
Lambda&& f,
NoInferSchemaTag,
std::enable_if_t<
c10::guts::is_functor<std::decay_t<Lambda>>::value,
std::nullptr_t> = nullptr)
: func_(c10::KernelFunction::makeFromUnboxedLambda(
std::forward<Lambda>(f))),
cpp_signature_(c10::impl::CppSignature::make<Lambda>())
// TODO: Don't go through WrapRuntimeKernelFunctor
,
schema_(nullptr),
debug_() {}
#endif
~CppFunction();
CppFunction(CppFunction&&) noexcept = default;
CppFunction& operator=(CppFunction&&) = default;
/// \private
/// Creates a function from a type-erased boxed kernel.
static CppFunction makeFromBoxedKernel(c10::BoxedKernel kernel) {
return CppFunction(
c10::KernelFunction::makeFromBoxedKernel(std::move(kernel)),
/* cpp_signature */ c10::nullopt, // not known for boxed functions
/* schema */ nullptr);
}
/// This creates a fallthrough function. Fallthrough functions
/// immediately redispatch to the next available dispatch key,
/// but are implemented more efficiently than a hand written
/// function done in the same way.
static CppFunction makeFallthrough() {
return makeFromBoxedKernel(c10::BoxedKernel::makeFallthrough());
}
/// \private
///
/// Creates a function that raises an error saying that named tensors
/// are not supported when called.
static CppFunction makeNamedNotSupported() {
return makeFromBoxedKernel(c10::BoxedKernel::makeNamedNotSupported());
}
/// Create a function from a boxed kernel function with signature
/// `void(const OperatorHandle&, Stack*)`; i.e., they receive a
/// stack of arguments in a boxed calling convention, rather than
/// in the native C++ calling convention. Boxed functions are
/// typically only used to register backend fallbacks via
/// torch::Library::fallback().
template <c10::BoxedKernel::BoxedKernelFunction* func>
static CppFunction makeFromBoxedFunction() {
return makeFromBoxedKernel(c10::BoxedKernel::makeFromFunction<func>());
}
// Variant that takes in a boxed kernel function with a plumbed
// DispatchKeySet. See Note [Plumbing Keys Through The Dispatcher] for
// details.
template <c10::BoxedKernel::BoxedKernelFunction_withDispatchKeys* func>
static CppFunction makeFromBoxedFunction() {
return makeFromBoxedKernel(c10::BoxedKernel::makeFromFunction<func>());
}
/// Create a function from a boxed kernel functor which defines
/// `operator()(const OperatorHandle&, DispatchKeySet, Stack*)`
/// (receiving arguments from boxed calling convention) and inherits
/// from `c10::OperatorKernel`. Unlike makeFromBoxedFunction, functions
/// registered in this way can also carry additional state which
/// is managed by the functor; this is useful if you're writing an
/// adapter to some other implementation, e.g., a Python callable, which
/// is dynamically associated with the registered kernel.
template <class KernelFunctor>
static CppFunction makeFromBoxedFunctor(
std::unique_ptr<KernelFunctor> kernelFunctor) {
return makeFromBoxedKernel(
c10::BoxedKernel::makeFromFunctor(std::move(kernelFunctor)));
}
/// Create a function from an unboxed kernel function.
/// This is typically used to register common operators.
template <
typename FuncPtr,
std::enable_if_t<
c10::guts::is_function_type<FuncPtr>::value,
std::nullptr_t> = nullptr>
static CppFunction makeFromUnboxedFunction(FuncPtr* f) {
return CppFunction(f);
}
/// Create a function from a compile time unboxed kernel function pointer.
/// This is typically used to register common operators.
/// Compile time function pointers can be used to allow the compiler
/// to optimize (e.g. inline) calls to it.
template <
typename FuncPtr,
std::enable_if_t<
c10::is_compile_time_function_pointer<FuncPtr>::value,
std::nullptr_t> = nullptr>
static CppFunction makeFromUnboxedFunction(FuncPtr f) {
return CppFunction(f);
}
CppFunction&& debug(std::string d) && {
debug_ = std::move(d);
return std::move(*this);
}
private:
c10::optional<c10::DispatchKey> dispatch_key_;
c10::KernelFunction func_;
c10::optional<c10::impl::CppSignature> cpp_signature_;
std::unique_ptr<c10::FunctionSchema> schema_;
std::string debug_;
// The "setter" for dispatch_key_
template <typename Func>
friend CppFunction dispatch(c10::DispatchKey, Func&&);
// The only class which actually pulls out values from CppFunction (does so
// destructively, felt too lazy to write accessors that I don't even
// want users to use)
friend class Library;
CppFunction(
c10::KernelFunction func,
c10::optional<c10::impl::CppSignature> cpp_signature,
std::unique_ptr<c10::FunctionSchema> schema);
};
/// \defgroup torch-dispatch-overloads torch::dispatch overloads
/// Create a torch::CppFunction which is associated with a specific
/// dispatch key. torch::CppFunctions that are tagged with a
/// c10::DispatchKey don't get invoked unless the dispatcher determines
/// that this particular c10::DispatchKey is the one that should be
/// dispatched to.
///
/// This function is generally not used directly, instead, prefer using
/// TORCH_LIBRARY_IMPL(), which will implicitly set the c10::DispatchKey
/// for all registration calls inside of its body.
///
/// \ingroup torch-dispatch-overloads
template <typename Func>
inline CppFunction dispatch(c10::DispatchKey k, Func&& raw_f) {
CppFunction f(std::forward<Func>(raw_f));
if (k == c10::DispatchKey::CatchAll) {
f.dispatch_key_ = c10::nullopt;
} else {
f.dispatch_key_ = k;
}
return f;
}
/// Convenience overload of dispatch() which accepts c10::DeviceType
///
/// \ingroup torch-dispatch-overloads
template <typename Func>
inline CppFunction dispatch(c10::DeviceType type, Func&& raw_f) {
auto deviceTypeToDispatchKey = [](c10::DeviceType t) {
switch (t) {
// This list is synchronized with the k-constants in c10/core/DeviceType.h
case c10::DeviceType::CPU:
return c10::DispatchKey::CPU;
case c10::DeviceType::CUDA:
return c10::DispatchKey::CUDA;
case c10::DeviceType::IPU:
return c10::DispatchKey::IPU;
case c10::DeviceType::XLA:
return c10::DispatchKey::XLA;
case c10::DeviceType::Lazy:
return c10::DispatchKey::Lazy;
case c10::DeviceType::XPU:
return c10::DispatchKey::XPU;
case c10::DeviceType::MPS:
return c10::DispatchKey::MPS;
case c10::DeviceType::Meta:
return c10::DispatchKey::Meta;
case c10::DeviceType::HIP:
return c10::DispatchKey::HIP;
case c10::DeviceType::ORT:
return c10::DispatchKey::ORT;
case c10::DeviceType::HPU:
return c10::DispatchKey::HPU;
case c10::DeviceType::MTIA:
return c10::DispatchKey::MTIA;
case c10::DeviceType::PrivateUse1:
return c10::DispatchKey::PrivateUse1;
default:
TORCH_CHECK(
false,
"Device type ",
t,
" cannot be overloaded at dispatch time, "
"please file a bug report explaining what you were trying to do.");
}
};
return dispatch(deviceTypeToDispatchKey(type), std::forward<Func>(raw_f));
}
/// \defgroup torch-schema-overloads torch::schema overloads
/// Construct a c10::FunctionSchema from a string, with an explicitly
/// specified c10::AliasAnalysisKind. Ordinarily, schemas are simply
/// passed in as strings, but if you need to specify a custom alias
/// analysis, you can replace the string with a call to this function.
///
/// ```
/// // Default alias analysis (FROM_SCHEMA)
/// m.def("def3(Tensor self) -> Tensor");
/// // Pure function alias analysis
/// m.def(torch::schema("def3(Tensor self) -> Tensor",
/// c10::AliasAnalysisKind::PURE_FUNCTION));
/// ```
///
/// \ingroup torch-schema-overloads
inline c10::FunctionSchema schema(const char* str, c10::AliasAnalysisKind k) {
c10::FunctionSchema s = torch::jit::parseSchema(str);
s.setAliasAnalysis(k);
return s;
}
/// Function schemas can be directly constructed from string literals.
///
/// \ingroup torch-schema-overloads
inline c10::FunctionSchema schema(const char* s) {
return schema(s, c10::AliasAnalysisKind::FROM_SCHEMA);
}
/// \private
///
/// Already constructed function schemas are accepted if they are
/// rvalues.
///
/// \ingroup torch-schema-overloads
inline c10::FunctionSchema&& schema(c10::FunctionSchema&& s) {
return std::move(s);
}
namespace detail {
inline std::variant<c10::OperatorName, c10::FunctionSchema> constructSchemaOrName(
c10::FunctionSchema&& s) {
return std::move(s);
}
inline std::variant<c10::OperatorName, c10::FunctionSchema> constructSchemaOrName(
c10::OperatorName&& n) {
return std::move(n);
}
inline std::variant<c10::OperatorName, c10::FunctionSchema>
constructSchemaOrName(const char* str) {
auto s = torch::jit::parseSchemaOrName(str);
if (std::holds_alternative<c10::FunctionSchema>(s)) {
std::get<c10::FunctionSchema>(s).setAliasAnalysis(
c10::AliasAnalysisKind::FROM_SCHEMA);
}
return s;
}
class TorchLibraryInit;
} // namespace detail
// Note [Selective build]
// ~~~~~~~~~~~~~~~~~~~~~~
// In some settings, especially mobile, it is important to avoid compiling any
// references to functions that you aren't actually going to use, so that they
// can be eliminated by the linker. We call this capability "selective build".
//
// A very easy way to implement selective build which results in a lot of
// boilerplate is to just add ifdef's around every registration call, but this
// means you have to write a lot of extra lines of code at every registration
// site, and it also means you have to define some munging scheme to map
// operators to macros.
//
// Instead of doing this, we have a different mechanism centered around the
// concept of a SelectiveStr. A selective name is like a const char* string,
// except it also carries at compile time a boolean saying whether or not a
// registration should actually happen or not. We then have extra overloads
// which bypass registration entirely if a selective name is disabled. We do a
// constexpr test to see if a operator should be enabled or not; this is
// currently implemented in ATen/core/op_registration/op_allowlist.h
namespace detail {
// dummy class for non selected custom torchbind classes
class ClassNotSelected {
public:
ClassNotSelected& def_pickle(...) {
return *this;
}
ClassNotSelected& def(...) {
return *this;
}
};
// A SelectiveStr is like a const char*, except that it also comes
// with a type brand that says whether or not the name is enabled or
// not. If the string is disabled, then (at compile time) we DON'T generate
// a registration call for it. This class is not intended to be called
// directly; use TORCH_SELECTIVE_NAME or TORCH_SELECTIVE_SCHEMA macros below
// to create it.
template <bool enabled>
class SelectiveStr {
public:
constexpr explicit SelectiveStr(const char* name) : name_(name) {}
constexpr operator const char*() {
return name_;
}
private:
const char* name_;
};
#define TORCH_SELECTIVE_CLASS(n) \
torch::detail::SelectiveStr<c10::impl::custom_class_allowlist_check(n)>(n)
#define TORCH_SELECTIVE_NAME(n) \
torch::detail::SelectiveStr<c10::impl::op_allowlist_check(n)>(n)
#define TORCH_SELECTIVE_SCHEMA(n) \
torch::detail::SelectiveStr<c10::impl::schema_allowlist_check(n)>(n)
} // namespace detail
/// This object provides the API for defining operators and providing
/// implementations at dispatch keys. Typically, a torch::Library
/// is not allocated directly; instead it is created by the
/// TORCH_LIBRARY() or TORCH_LIBRARY_IMPL() macros.
///
/// Most methods on torch::Library return a reference to itself,
/// supporting method chaining.
///
/// ```
/// // Examples:
///
/// TORCH_LIBRARY(torchvision, m) {
/// // m is a torch::Library
/// m.def("roi_align", ...);
/// ...
/// }
///
/// TORCH_LIBRARY_IMPL(aten, XLA, m) {
/// // m is a torch::Library
/// m.impl("add", ...);
/// ...
/// }
/// ```
///
class TORCH_API Library final {
public:
/// \private
///
/// Which type of macro produced this Library
enum Kind {
DEF, // from TORCH_LIBRARY (no qualifier)
IMPL,
FRAGMENT,
};
/// \private
///
/// Use TORCH_LIBRARY() or TORCH_LIBRARY_IMPL() instead of using these
/// constructors directly
Library(
Kind kind,
std::string ns,
c10::optional<c10::DispatchKey> k,
const char* file,
uint32_t line);
Library(const Library&) = delete;
Library& operator=(const Library&) = delete;
Library(Library&&) = default;
Library& operator=(Library&&) = default;
// Some notes about the API design here. We had the following constraints:
//
// - We need to support multiple "types" of arguments for schema and
// functions (e.g., unnamed lambda types, regular functions, const char*,
// fully instantiated schemas)
// - We don't want to write exponentially many overloads
// - We don't want to rely on implicit conversion to a common type,
// because the C++ compiler will only be willing to do a single
// implicit conversion (reducing the set of valid types which you
// can invoke with); also error messages are worse when an implicit
// conversion is not selected (as the compiler will not explain
// why it didn't select an implicit conversion; this is different
// from overloads where it will explain each candidate overload and
// why it didn't apply)
//
// To solve all of these constraints at the same time, we use a trick taken
// from the pybind11 library: template over the argument in the user visible
// API, and inside of the templated function explicitly call an overloaded
// function to resolve the argument to a real type. You get the good error
// messages from overloads, but at the same time you only need to write the
// overload for any given argument type once.
/// Declare an operator with a schema, but don't provide any implementations
/// for it. You're expected to then provide implementations using the
/// impl() method. All template arguments are inferred.
///
/// \param raw_schema The schema of the operator to be defined.
/// Typically, this is a `const char*` string literal, but any type
/// accepted by torch::schema() is accepted here.
///
/// ```
/// // Example:
/// TORCH_LIBRARY(myops, m) {
/// m.def("add(Tensor self, Tensor other) -> Tensor");
/// }
/// ```
template <typename Schema>
Library& def(
Schema&& raw_schema,
const std::vector<at::Tag>& tags = {},
_RegisterOrVerify rv = _RegisterOrVerify::REGISTER) & {
c10::FunctionSchema s = schema(std::forward<Schema>(raw_schema));
return _def(std::move(s), nullptr, tags, rv);
}
/// Declares that for all operators that are subsequently def'ed, their
/// abstract impls may be found in the given Python module (pymodule).
/// This registers some help text that is used if the abstract impl
/// cannot be found.
///
/// Args:
/// - pymodule: the python module
/// - context: We may include this in the error message.
Library& impl_abstract_pystub(const char* pymodule, const char* context = "") {
impl_abstract_pystub_ = {pymodule, context};
return *this;
}
/// Define an operator for a schema and then register an implementation for
/// it. This is typically what you would use if you aren't planning
/// on making use of the dispatcher to structure your operator
/// implementation. It's roughly equivalent to calling def() and
/// then impl(), but if you omit the schema of the operator, we will
/// infer it from the type of your C++ function. All template
/// arguments are inferred.
///
/// \param raw_name_or_schema The schema of the operator to be
/// defined, or just the name of the operator if the schema is to be
/// inferred from `raw_f`. Typically a `const char*` literal.
/// \param raw_f The C++ function that implements this operator.
/// Any valid constructor of torch::CppFunction is accepted here;
/// typically you provide a function pointer or lambda.
///
/// ```
/// // Example:
/// TORCH_LIBRARY(myops, m) {
/// m.def("add", add_fn);
/// }
/// ```
template <typename NameOrSchema, typename Func>
Library& def(NameOrSchema&& raw_name_or_schema, Func&& raw_f,
const std::vector<at::Tag>& tags = {}) & {
CppFunction f(std::forward<Func>(raw_f));
return _def(
detail::constructSchemaOrName(
::std::forward<NameOrSchema>(raw_name_or_schema)),
::std::move(f), tags);
}
/// Register an implementation for an operator. You may register multiple
/// implementations for a single operator at different dispatch keys
/// (see torch::dispatch()). Implementations must have a corresponding
/// declaration (from def()), otherwise they are invalid. If you plan
/// to register multiple implementations, DO NOT provide a function
/// implementation when you def() the operator.
///
/// \param name The name of the operator to implement. Do NOT provide
/// schema here.
/// \param raw_f The C++ function that implements this operator. Any
/// valid constructor of torch::CppFunction is accepted here;
/// typically you provide a function pointer or lambda.
///
/// ```
/// // Example:
/// TORCH_LIBRARY_IMPL(myops, CUDA, m) {
/// m.impl("add", add_cuda);
/// }
/// ```
template <typename Name, typename Func>
Library& impl(
Name name,
Func&& raw_f,
_RegisterOrVerify rv = _RegisterOrVerify::REGISTER) & {
// TODO: need to raise an error when you impl a function that has a
// catch all def
#if defined C10_MOBILE
CppFunction f(std::forward<Func>(raw_f), NoInferSchemaTag());
#else
CppFunction f(std::forward<Func>(raw_f));
#endif
return _impl(name, std::move(f), rv);
}
#if defined C10_MOBILE
// Note: This overload is needed only for C10_MOBILE, since the automatically
// defined copy constructor for the CppFunction doesn't have the additional
// NoInferSchemaTag argument. We define the overload for the impl() function
// to accept a CppFunction&& argument. The already constructed CppFunction
// object may or may not have the inferred schema, but it doesn't matter
// for our purposes since if it already has the inferred schema, then we
// might as well just pass it through directly.
//
template <typename Name>
Library& impl(Name name, CppFunction&& raw_f) & {
// TODO: need to raise an error when you impl a function that has a
// catch all def
CppFunction f(std::forward<CppFunction>(raw_f));
return _impl(name, std::move(f));
}
#endif
// Helper for getting an OperatorName for a const char*. You probably
// don't need this.
c10::OperatorName _resolve(const char* name) const;
/// \private
///
/// Convenience overload for directly specifying the dispatch key when
/// impl(). You probably don't need this; instead, prefer specifying
/// the dispatch key for the entire block in TORCH_LIBRARY_IMPL()
template <typename Name, typename Dispatch, typename Func>
Library& impl(Name name, Dispatch&& key, Func&& raw_f) & {
return impl(
name, dispatch(std::forward<Dispatch>(key), std::forward<Func>(raw_f)));
}
template <typename Name, typename Func>
Library& impl_UNBOXED(Name /*name*/, Func* /*raw_f*/) & {
static_assert(
c10::guts::false_t<Func>(),
".impl_UNBOXED(...) was removed. Please use .impl(...) instead.");
return *this;
}
// These overloads cover cases when a SelectiveStr (see Note [Selective
// build]) has been disabled at compile time. In that case, don't generate
// any code referencing the passed in functions at all.
Library& def(detail::SelectiveStr<false>, const std::vector<at::Tag>& tags = {}) & {
return *this;
}
Library& def(detail::SelectiveStr<true> raw_schema, const std::vector<at::Tag>& tags = {}) & {
return def(raw_schema.operator const char*(), tags);
}
template <typename Func>
Library& def(detail::SelectiveStr<false>, Func&& /*raw_f*/, const std::vector<at::Tag>& tags = {}) & {
return *this;
}
template <typename Func>
Library& def(detail::SelectiveStr<true> raw_name_or_schema, Func&& raw_f, const std::vector<at::Tag>& tags = {}) & {
return def(
raw_name_or_schema.operator const char*(), std::forward<Func>(raw_f), tags);
}
template <typename Func>
Library& impl(detail::SelectiveStr<false>, Func&& /*raw_f*/) & {
return *this;
}
template <typename Dispatch, typename Func>
Library& impl(
detail::SelectiveStr<false>,
Dispatch&& /*key*/,
Func&& /*raw_f*/) & {
return *this;
}
template <typename Func>
Library& impl_UNBOXED(
detail::SelectiveStr<false> /*name*/,
Func* /*raw_f*/) & {
static_assert(
c10::guts::false_t<Func>(),
".impl_UNBOXED(...) was removed. Please use .impl(...) instead.");
return *this;
}
template <typename Func>
Library& impl(detail::SelectiveStr<true> name, Func&& raw_f) & {
return impl(name.operator const char*(), std::forward<Func>(raw_f));
}
template <typename Dispatch, typename Func>
Library& impl(
detail::SelectiveStr<true> name,
Dispatch&& key,
Func&& raw_f) & {
return impl(
name.operator const char*(),
std::forward<Dispatch>(key),
std::forward<Func>(raw_f));
}
template <typename Func>
Library& impl_UNBOXED(
detail::SelectiveStr<true> /*name*/,
Func* /*raw_f*/) & {
static_assert(
c10::guts::false_t<Func>(),
".impl_UNBOXED(...) was removed. Please use .impl(...) instead.");
return *this;
}
/// Register a fallback implementation for all operators which will be used
/// if there is not a specific implementation for an operator available.
/// There MUST be a DispatchKey associated with a fallback; e.g.,
/// only call this from TORCH_LIBRARY_IMPL() with namespace `_`.
///
/// \param raw_f The function that implements the fallback. Unboxed
/// functions typically do not work as fallback functions, as
/// fallback functions must work for every operator (even though
/// they have varying type signatures). Typical arguments are
/// CppFunction::makeFallthrough() or
/// CppFunction::makeFromBoxedFunction()
///
/// ```
/// // Example:
///
/// TORCH_LIBRARY_IMPL(_, AutogradXLA, m) {
/// // If there is not a kernel explicitly registered
/// // for AutogradXLA, fallthrough to the next
/// // available kernel
/// m.fallback(torch::CppFunction::makeFallthrough());
/// }
///
/// // See aten/src/ATen/core/dispatch/backend_fallback_test.cpp
/// // for a full example of boxed fallback
/// ```
template <typename Func>
Library& fallback(Func&& raw_f) & {
CppFunction f((std::forward<Func>(raw_f)));
return _fallback(std::move(f));
}
template <class CurClass>
inline torch::class_<CurClass> class_(const std::string& className);
// These overloads enable the use of selective build on classes registered
// within a library. The API is the same as before with 1 minor change.
// Instead of m.class_<foo>("foo") you instead do
// m.class_<foo>(TORCH_SELECTIVE_CLASS("foo"))
template <class CurClass>
inline torch::class_<CurClass> class_(detail::SelectiveStr<true> className);
template <class CurClass>
inline detail::ClassNotSelected class_(detail::SelectiveStr<false> className);
// De-registers all registrations created with this Library
void reset();
private:
Kind kind_;
c10::optional<std::string> ns_;
c10::optional<c10::DispatchKey> dispatch_key_;
c10::optional<std::pair<const char*, const char*>> impl_abstract_pystub_;
const char* file_;
uint32_t line_;
std::vector<c10::RegistrationHandleRAII> registrars_;
friend class detail::TorchLibraryInit;
// Non-user visible actual implementations of functions. These aren't
// public because we only implement & qualifier and not && qualifier
Library& _def(
c10::FunctionSchema&& schema,
c10::OperatorName* out_name = nullptr,
const std::vector<at::Tag>& tags = {},
_RegisterOrVerify rv = _RegisterOrVerify::REGISTER) &;
Library& _def(
std::variant<c10::OperatorName, c10::FunctionSchema>&&,
CppFunction&& f,
const std::vector<at::Tag>& tags = {}) &;
Library& _impl(
const char* name,
CppFunction&& f,
_RegisterOrVerify rv = _RegisterOrVerify::REGISTER) &;
Library& _fallback(CppFunction&& f) &;
at::OperatorName _parseNameForLib(const char* name_str) const;
};
namespace detail {
class TorchLibraryInit final {
private:
using InitFn = void(Library&);
Library lib_;
public:
TorchLibraryInit(
Library::Kind kind,
InitFn* fn,
const char* ns,
c10::optional<c10::DispatchKey> k,
const char* file,
uint32_t line)
: lib_(kind, ns, k, file, line) {
fn(lib_);
}
};
} // namespace detail
} // namespace torch
// NB: The EXACT NAMING of the initializer functions (e.g.,
// TORCH_LIBRARY_init_aten) matters for the code analyzer;
// see the regexes at tools/code_analyzer/run_analyzer.sh
/// Macro for defining a function that will be run at static
/// initialization time to define a library of operators in the
/// namespace `ns` (must be a valid C++ identifier, no quotes).
/// Use this macro when you want to define a new set of custom operators
/// that do not already exist in PyTorch.
///
/// Example usage:
///
/// ```
/// TORCH_LIBRARY(myops, m) {
/// // m is a torch::Library; methods on it will define
/// // operators in the myops namespace
/// m.def("add", add_impl);
/// }
/// ```
///
/// The `m` argument is bound to a torch::Library that is used to
/// register operators. There may only be one TORCH_LIBRARY()
/// for any given namespace.
#define TORCH_LIBRARY(ns, m) \
static void TORCH_LIBRARY_init_##ns(torch::Library&); \
static const torch::detail::TorchLibraryInit TORCH_LIBRARY_static_init_##ns( \
torch::Library::DEF, \
&TORCH_LIBRARY_init_##ns, \
#ns, \
c10::nullopt, \
__FILE__, \
__LINE__); \
void TORCH_LIBRARY_init_##ns(torch::Library& m)
/// \private
///
/// This macro is a version of TORCH_LIBRARY() that doesn't enforce that there
/// is only one library (it is a "fragment"). This is used inside the
/// PerOpRegistration.cpp file, as well as in places where all op registrations
/// within the same namespace cannot be easily put into one macro block
/// (this is mostly the case for custom ops in fbcode that were ported from
/// the old API)
#define TORCH_LIBRARY_FRAGMENT(ns, m) _TORCH_LIBRARY_FRAGMENT(ns, m, C10_UID)
/// \private
///
/// The above macro requires an extra unique identifier (uid) to prevent
/// variable name collisions This can happen if TORCH_LIBRARY_FRAGMENT is called
/// multiple times with the same namespace in the same translation unit. Note
/// that the TORCH_LIBRARY variant doesn't run into this problem, because it
/// enforces that it can only be called once for a given namespace.
#define _TORCH_LIBRARY_FRAGMENT(ns, m, uid) \
static void C10_CONCATENATE( \
TORCH_LIBRARY_FRAGMENT_init_##ns##_, uid)(torch::Library&); \
static const torch::detail::TorchLibraryInit C10_CONCATENATE( \
TORCH_LIBRARY_FRAGMENT_static_init_##ns##_, uid)( \
torch::Library::FRAGMENT, \
&C10_CONCATENATE(TORCH_LIBRARY_FRAGMENT_init_##ns##_, uid), \
#ns, \
c10::nullopt, \
__FILE__, \
__LINE__); \
void C10_CONCATENATE( \
TORCH_LIBRARY_FRAGMENT_init_##ns##_, uid)(torch::Library & m)
/// Macro for defining a function that will be run at static
/// initialization time to define operator overrides for dispatch key
/// `k` (must be an unqualified enum member of c10::DispatchKey) in
/// namespace `ns` (must be a valid C++ identifer, no quotes). Use this
/// macro when you want to implement a preexisting set of custom
/// operators on a new dispatch key (e.g., you want to provide CUDA
/// implementations of already existing operators). One common usage
/// pattern is to use TORCH_LIBRARY() to define schema for all new
/// operators you want to define, and then use several
/// TORCH_LIBRARY_IMPL() blocks to provide implementations of the
/// operator for CPU, CUDA and Autograd.
///
/// In some cases, you need to define something that applies to all namespaces,
/// not just one namespace (usually a fallback). In that case, use the reserved
/// namespace _, e.g.,
///
/// ```
/// TORCH_LIBRARY_IMPL(_, XLA, m) {
/// m.fallback(xla_fallback);
/// }
/// ```
///
/// Example usage:
///
/// ```
/// TORCH_LIBRARY_IMPL(myops, CPU, m) {
/// // m is a torch::Library; methods on it will define
/// // CPU implementations of operators in the myops namespace.
/// // It is NOT valid to call torch::Library::def()
/// // in this context.
/// m.impl("add", add_cpu_impl);
/// }
/// ```
///
/// If ``add_cpu_impl`` is an overloaded function, use a
/// ``static_cast`` to specify which overload you want
/// (by providing the full type).