Skip to content

Latest commit

 

History

History
76 lines (63 loc) · 1.45 KB

ex04_map-example.md

File metadata and controls

76 lines (63 loc) · 1.45 KB

Small demo of purrr::map()

Jenny Bryan 2018-04-10

purrr::map() can be used to work with functions that aren’t vectorized.

df_list <- list(
  iris = head(iris, 2),
  mtcars = head(mtcars, 3)
)
df_list
#> $iris
#>   Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#> 1          5.1         3.5          1.4         0.2  setosa
#> 2          4.9         3.0          1.4         0.2  setosa
#> 
#> $mtcars
#>                mpg cyl disp  hp drat    wt  qsec vs am gear carb
#> Mazda RX4     21.0   6  160 110 3.90 2.620 16.46  0  1    4    4
#> Mazda RX4 Wag 21.0   6  160 110 3.90 2.875 17.02  0  1    4    4
#> Datsun 710    22.8   4  108  93 3.85 2.320 18.61  1  1    4    1

This does not work. nrow() expects a single data frame as input.

nrow(df_list)
#> NULL

purrr::map() applies nrow() to each element of df_list.

library(purrr)

map(df_list, nrow)
#> $iris
#> [1] 2
#> 
#> $mtcars
#> [1] 3

Different calling styles make sense in more complicated situations. Hard to justify in this simple example.

map(df_list, ~ nrow(.x))
#> $iris
#> [1] 2
#> 
#> $mtcars
#> [1] 3

df_list %>%
  map(nrow)
#> $iris
#> [1] 2
#> 
#> $mtcars
#> [1] 3

If you know what the return type is (or should be), use a type-specific variant of map().

map_int(df_list, ~ nrow(.x))
#>   iris mtcars 
#>      2      3

More on coverage of map() and friends: https://jennybc.github.io/purrr-tutorial/.