Skip to content

Latest commit

 

History

History
61 lines (48 loc) · 1.95 KB

README.md

File metadata and controls

61 lines (48 loc) · 1.95 KB

Super Mario Bros RL

Alt text

1. Setup

Requirements


2. How to Train

Modify the parameters in mario_a2c.py as you like.

python3 mario_a2c.py

or

python3 mario_ppo.py

3. How to Eval

Modify the is_load_model, is_render parameters in mario_a2c.py as you like.

python3 mario_a2c.py

or

python3 mario_ppo.py

4. Loss/Reward Graph

It use just A2C(PAAC) image


It use just ICM and no ext reward.(Curiosity-driven) image

References

[1] Actor-Critic Algorithms
[2] Efficient Parallel Methods for Deep Reinforcement Learning
[3] Noisy Networks for Exploration
[4] Proximal Policy Optimization Algorithms
[5] Curiosity-driven Exploration by Self-supervised Prediction