|
| 1 | +from __future__ import division |
| 2 | +## |
| 3 | +import numpy as np |
| 4 | +import scipy.linalg |
| 5 | +from prettyplotlib import plt |
| 6 | +from scipy.io import mmread |
| 7 | +from sklearn.metrics import mean_squared_error |
| 8 | +## |
| 9 | +from incremental_svd2 import incremental_SVD |
| 10 | + |
| 11 | + |
| 12 | +def single_dot(u, svT, x, y): |
| 13 | + colU = u[y, :] |
| 14 | + rowV = svT[:, x] |
| 15 | + return (colU).dot(rowV) |
| 16 | + |
| 17 | + |
| 18 | +def check_orthogonality(A): |
| 19 | + return np.trace(abs(A.T.dot(A) - np.diag([1] * min(A.shape)))) |
| 20 | + |
| 21 | +if __name__ == '__main__': |
| 22 | + train = np.matrix(mmread('subset_train.mtx').todense()) |
| 23 | + train = train[0:200, 0:100] |
| 24 | + print 'Using matrix of size {}'.format(train.shape) |
| 25 | + |
| 26 | + print 'Testing SVD' |
| 27 | + svdX = [] |
| 28 | + svdY = [] |
| 29 | + orthoX = [] |
| 30 | + orthoY = [] |
| 31 | + u, s, vT = scipy.linalg.svd(train) |
| 32 | + assert np.allclose(train, u.dot(scipy.linalg.diagsvd(s, u.shape[0], vT.shape[1]).dot(vT))) |
| 33 | + # See the loss in performance as we perform low-rank approximations |
| 34 | + for k in xrange(1, 100): |
| 35 | + low_s = [s[i] for i in xrange(k)] + (min(u.shape[0], vT.shape[1]) - k) * [0] |
| 36 | + reconstruct = u.dot(scipy.linalg.diagsvd(low_s, u.shape[0], vT.shape[1]).dot(vT)) |
| 37 | + err = mean_squared_error(train, reconstruct) |
| 38 | + print 'Exact SVD with low-rank approximation {}'.format(k) |
| 39 | + #print err |
| 40 | + #print |
| 41 | + svdX.append(k) |
| 42 | + svdY.append(err) |
| 43 | + orthoX.append(k) |
| 44 | + orthoY.append(check_orthogonality(u)) |
| 45 | + plt.plot(svdX, svdY, label="SVD", color='black', linewidth='2', linestyle='--') |
| 46 | + |
| 47 | + print |
| 48 | + print 'Testing incremental SVD' |
| 49 | + incr_ortho = [] |
| 50 | + for num in xrange(100, 1001, 300): |
| 51 | + print '... with block size of {}'.format(num) |
| 52 | + X, Y = [], [] |
| 53 | + incr_orthoY = [] |
| 54 | + for k in xrange(1, 101, 1): |
| 55 | + if k % 25 == 0: |
| 56 | + print ' ... up to k={}'.format(k) |
| 57 | + u, s, vT = incremental_SVD(train, k, num) |
| 58 | + reconstruct = u.dot(s.dot(vT)) |
| 59 | + X.append(k) |
| 60 | + Y.append(mean_squared_error(train, reconstruct)) |
| 61 | + incr_orthoY.append(check_orthogonality(u)) |
| 62 | + incr_ortho.append(['iSVD n={}'.format(num), X, incr_orthoY]) |
| 63 | + plt.plot(X, Y, label='iSVD n={}'.format(num)) |
| 64 | + """ |
| 65 | + print 'Testing raw SVD => exact reconstruction' |
| 66 | + svT = scipy.linalg.diagsvd(s, u.shape[0], vT.shape[1]).dot(vT) |
| 67 | + for y in xrange(train.shape[0]): |
| 68 | + for x in xrange(train.shape[1]): |
| 69 | + colU = u[y, :] |
| 70 | + rowV = svT[:, x] |
| 71 | + assert np.allclose(train[y, x], single_dot(u, svT, x, y)) |
| 72 | + """ |
| 73 | + ## |
| 74 | + plt.title('SVD reconstruction error on {}x{} matrix'.format(*train.shape)) |
| 75 | + plt.xlabel('Low rank approximation') |
| 76 | + plt.ylabel('Mean Squared Error') |
| 77 | + plt.ylim(0, max(svdY)) |
| 78 | + plt.legend(loc='best') |
| 79 | + plt.savefig('reconstruct_error_{}x{}.pdf'.format(*train.shape)) |
| 80 | + plt.show(block=True) |
| 81 | + ## |
| 82 | + plt.plot(svdX, svdY, label="SVD", color='black', linewidth='2', linestyle='--') |
| 83 | + for label, X, Y in incr_ortho: |
| 84 | + plt.plot(X, Y, label=label) |
| 85 | + plt.title('SVD orthogonality error on {}x{} matrix'.format(*train.shape)) |
| 86 | + plt.xlabel('Low rank approximation') |
| 87 | + plt.ylabel('Orthogonality error') |
| 88 | + #plt.ylim(0, max(orthoY)) |
| 89 | + plt.legend(loc='best') |
| 90 | + plt.savefig('reconstruct_ortho_{}x{}.pdf'.format(*train.shape)) |
| 91 | + plt.show(block=True) |
0 commit comments