-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathchat1.py
33 lines (29 loc) · 1.32 KB
/
chat1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import requests
import PyPDF2
from itertools import chain
from langchain_community.vectorstores import Chroma
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.embeddings.sentence_transformer import SentenceTransformerEmbeddings
# Function to fetch content from a website
def fetch_website_content(url):
response = requests.get(url)
return response.text
# Function to extract text from a PDF file
def extract_pdf_text(pdf_file):
with open(pdf_file, "rb") as file:
pdf_reader = PyPDF2.PdfReader(file)
text = ""
for page_num in range(len(pdf_reader.pages)):
text += pdf_reader.pages[page_num].extract_text()
return text
# Split the combined content into smaller chunks
def split_text(text, chunk_size=500, chunk_overlap=100):
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
chunks = text_splitter.split_text(text)
return chunks
# Initialize embeddings and vector store
def initialize_vector_store(contents):
embedding_function = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
web_chunks = list(chain.from_iterable(split_text(content) for content in contents))
db = Chroma.from_texts(web_chunks, embedding_function)
return db