-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcertify.py
70 lines (60 loc) · 3.11 KB
/
certify.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
# evaluate a smoothed classifier on a dataset
import argparse
import os
import setGPU
from datasets import get_dataset, DATASETS, get_num_classes
from core import Smooth
from time import time
import torch
import datetime
from architectures import get_architecture, get_diffusion_model, DiffSmooth_Classifier
parser = argparse.ArgumentParser(description='Certify many examples')
parser.add_argument("dataset", choices=DATASETS, help="which dataset")
parser.add_argument("classifier", type=str, help="path to saved pytorch model of base classifier")
parser.add_argument("sigma", type=float, help="noise hyperparameter")
parser.add_argument("outfile", type=str, help="output file")
parser.add_argument("--m", type=int, default=5, help="the number of local smoothing noise")
parser.add_argument("--local_noise_sd", type=float, default=0.25, help="the noise magnitude for the local smoothing")
parser.add_argument("--batch", type=int, default=50, help="batch size")
parser.add_argument("--skip", type=int, default=100, help="how many examples to skip")
parser.add_argument("--max", type=int, default=-1, help="stop after this many examples")
parser.add_argument("--split", choices=["train", "test"], default="test", help="train or test set")
parser.add_argument("--N0", type=int, default=100)
parser.add_argument("--N", type=int, default=10000, help="number of samples to use")
parser.add_argument("--alpha", type=float, default=0.001, help="failure probability")
args = parser.parse_args()
if __name__ == "__main__":
# load the base classifier
checkpoint = torch.load(args.classifier)
classifier = get_architecture(checkpoint["arch"], args.dataset)
classifier.load_state_dict(checkpoint['state_dict'])
diffusion = get_diffusion_model(args.sigma, args.dataset)
base_classifier = DiffSmooth_Classifier(args.dataset, classifier, diffusion, args.m, args.local_noise_sd)
# create the smooothed classifier g
smoothed_classifier = Smooth(base_classifier, get_num_classes(args.dataset), args.sigma)
# prepare output file
f = open(args.outfile, 'w')
print("idx\tlabel\tpredict\tradius\tcorrect\ttime", file=f, flush=True)
# Check if the directory exists, and if not, create it
directory = os.path.dirname(args.outfile)
if not os.path.exists(directory):
os.makedirs(directory)
# iterate through the dataset
dataset = get_dataset(args.dataset, args.split)
for i in range(len(dataset)):
# only certify every args.skip examples, and stop after args.max examples
if i % args.skip != 0:
continue
if i == args.max:
break
(x, label) = dataset[i]
before_time = time()
# certify the prediction of g around x
x = x.cuda()
prediction, radius = smoothed_classifier.certify(x, args.N0, args.N, args.alpha, args.batch)
after_time = time()
correct = int(prediction == label)
time_elapsed = str(datetime.timedelta(seconds=(after_time - before_time)))
print("{}\t{}\t{}\t{:.3}\t{}\t{}".format(
i, label, prediction, radius, correct, time_elapsed), file=f, flush=True)
f.close()