-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
296 lines (240 loc) · 10.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
import argparse
import ast
import logging
import os.path
import random
import cv2
import numpy as np
import mindspore as ms
import mindspore.dataset as ds
from mindspore import nn, context
from tqdm import tqdm
import mindspore.ops as F
import mindspore.ops.operations as P
from src.Criterion import BCE_DICE_LOSS, CrossEntropyWithLogits,BCE_DICE_LOSS
from src.RemoteSensingDataset import RSDataset, Mode
from src.se_resnext50 import seresnext50_unet
from src.se_resnext50_fpn import seresnext50_unet_fpn
seed = 1
np.random.seed(seed)
random.seed(seed)
ms.set_seed(seed)
ds.config.set_seed(seed)
visual_flag = False
# net_name = 'seresnext50_unet'
net_name = 'seresnext50_unet_fpn'
resume_epoch = 1
base_size = (720, 1280)
crop_size = (640, 1024)
dir_root = './datas'
dir_weights = './weights'
dir_log = './logs'
prefix = net_name
python_multiprocessing = True
num_parallel_workers = 16
eval_per_epoch = 0
FixedLossScaleManager = 1024.0
def calc_iou(target, prediction):
intersection = np.logical_and(target, prediction)
union = np.logical_or(target, prediction)
iou_score = np.sum(intersection) / np.sum(union)
return iou_score * 100
def cosine_lr(base_lr, decay_steps, total_steps, resume_steps=0):
for i in range(resume_steps, total_steps):
step_ = min(i, decay_steps)
yield base_lr * 0.5 * (1 + np.cos(np.pi * step_ / decay_steps))
def trainNet(net, criterion, epochs, batch_size):
dataset_train_buffer = RSDataset(root=dir_root, mode=Mode.train,
multiscale=True, scale=0.5,
base_size=base_size, crop_size=crop_size)
dataset_train = ds.GeneratorDataset(
source=dataset_train_buffer,
column_names=['data', 'label'],
shuffle=True,
python_multiprocessing=python_multiprocessing,
num_parallel_workers=num_parallel_workers,
max_rowsize=16
)
dataset_train = dataset_train.batch(batch_size)
train_steps = dataset_train.get_dataset_size()
dataloader_train = dataset_train.create_tuple_iterator()
dataset_valid_buffer = RSDataset(root=dir_root, mode=Mode.valid,
multiscale=False,
crop_size=(crop_size, crop_size))
dataset_valid = ds.GeneratorDataset(
source=dataset_valid_buffer,
column_names=['data', 'label'],
shuffle=False,
python_multiprocessing=python_multiprocessing,
num_parallel_workers=num_parallel_workers,
max_rowsize=16
)
dataset_valid = dataset_valid.batch(batch_size)
valid_steps = dataset_valid.get_dataset_size()
dataloader_valid = dataset_valid.create_tuple_iterator()
logger.info(f'''
==================================DATA=======================================
Dataset:
batch_size: {batch_size}
base_size : {base_size}
crop_size : {crop_size}
train:
nums : {len(dataset_train_buffer)}
steps: {train_steps}
valid:
nums : {len(dataset_valid_buffer)}
steps: {valid_steps}
=============================================================================
''')
# net_with_loss = nn.WithLossCell(backbone=net, loss_fn=criterion)
#
# train_model = TrainOneStepCell(network=net_with_loss, optimizer=opt)
total_train_steps = train_steps * epochs
resume_steps = train_steps * (resume_epoch - 1)
lr_iter = cosine_lr(0.0002, total_train_steps, total_train_steps, resume_steps)
params = net.trainable_params()
opt = nn.Adam(params=params, learning_rate=lr_iter, weight_decay=0.0005, loss_scale=FixedLossScaleManager)
loss_scale_manager = ms.train.loss_scale_manager.FixedLossScaleManager(FixedLossScaleManager, False)
train_model = ms.build_train_network(network=net, optimizer=opt, loss_fn=criterion,
level='O3', boost_level='O1', loss_scale_manager=loss_scale_manager)
eval_model = nn.WithEvalCell(network=net, loss_fn=criterion, add_cast_fp32=True)
logger.info(f'Begin training:')
best_model_epoch = 0
best_valid_iou = 0
for epoch in range(resume_epoch, epochs + 1):
# train
train_model.set_train(True)
train_avg_loss = 0
with tqdm(total=train_steps, desc=f'Epoch {epoch}/{epochs}', unit='batch') as train_pbar:
for step, (imgs, masks) in enumerate(dataloader_train):
train_loss = train_model(imgs, masks)
train_avg_loss += train_loss.asnumpy() / train_steps
train_pbar.update(1)
train_pbar.set_postfix(**{'loss (batch)': train_loss.asnumpy()})
# eval
eval_model.set_train(False)
if eval_per_epoch == 0 or epoch % eval_per_epoch == 0:
valid_avg_loss = 0
valid_avg_iou = 0
with tqdm(total=valid_steps, desc='Validation', unit='batch') as eval_pbar:
for idx, (imgs, masks) in enumerate(dataloader_valid):
valid_loss, preds, masks = eval_model(imgs, masks)
bs, c, h, w = F.shape(preds)
pred_buffer = preds.asnumpy().copy()
pred_buffer[pred_buffer >= 0] = 1
pred_buffer[pred_buffer < 0] = 0
mask_buffer = masks.asnumpy().copy()
if visual_flag:
for i in range(pred_buffer.shape[0]):
visual_pred = pred_buffer[i, 0, :, :].astype(np.uint8)
visual_mask = mask_buffer[i, 0, :, :].astype(np.uint8)
dir_buffer = f'./valid_buffer/{epoch}'
if not os.path.exists(dir_buffer):
os.mkdir(dir_buffer)
cv2.imwrite(f'{dir_buffer}/{idx}_{i}_pred.png', visual_pred * 255)
cv2.imwrite(f'{dir_buffer}/{idx}_{i}_mask.png', visual_mask * 255)
iou_score = calc_iou(mask_buffer, pred_buffer)
valid_avg_iou += iou_score / valid_steps
valid_avg_loss += valid_loss / valid_steps
eval_pbar.update(1)
eval_pbar.set_postfix(**{'IoU (batch)': iou_score})
if best_valid_iou is None or best_valid_iou < valid_avg_iou:
best_valid_iou = valid_avg_iou
best_model_epoch = epoch
ms.save_checkpoint(net, f'{dir_weights}/{prefix}_best.ckpt')
logger.info(f'''
In {epoch} epoch:
train loss : {train_avg_loss}
validation loss : {valid_avg_loss}
validation iou : {valid_avg_iou}
best valid iou : {best_valid_iou}
best model saved at {best_model_epoch} epoch.
''')
ms.save_checkpoint(net, f'{dir_weights}/{prefix}_last.ckpt')
logger.info('Training finished.')
def get_args():
parser = argparse.ArgumentParser(description='Training')
parser.add_argument('--root', default='./datas', type=str)
parser.add_argument('--epochs', default=200, type=int, help='Number of total epochs to train.')
parser.add_argument('--batch_size', default=8, type=int, help='Number of datas in one batch.')
parser.add_argument('--device_target', default='Ascend', type=str)
parser.add_argument('--load_pretrained', default=True, type=ast.literal_eval)
parser.add_argument('--num_parallel_workers', default=32, type=int)
parser.add_argument('--eval_per_epoch', default=0, type=int)
parser.add_argument('--close_python_multiprocessing', default=False, action='store_true')
parser.add_argument('--visual', default=False, action='store_true', help='Visual at eval.')
parser.add_argument('--resume_epoch', default=None, type=int)
parser.add_argument('--resume_weight', default=None, type=str)
parser.add_argument('--loss', default=None, type=str)
return parser.parse_args()
def init_logger():
fmt = '%(asctime)s - %(levelname)s: %(message)s'
formatter = logging.Formatter(fmt)
logger.setLevel(level=logging.INFO)
sh = logging.StreamHandler()
sh.setFormatter(formatter)
logger.addHandler(sh)
fh = logging.FileHandler(filename=f'{dir_log}/train.log', mode='w')
fh.setFormatter(formatter)
logger.addHandler(fh)
if __name__ == '__main__':
logger = logging.getLogger()
init_logger()
args = get_args()
context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target) # GRAPH_MODE
if args.root:
dir_root = args.root
if args.num_parallel_workers:
num_parallel_workers = args.num_parallel_workers
if args.eval_per_epoch:
eval_per_epoch = args.eval_per_epoch
if net_name == 'seresnext50_unet':
_net = seresnext50_unet_fpn(
resolution=(crop_size, crop_size),
load_pretrained=args.load_pretrained
)
elif net_name == 'seresnext50_unet_fpn':
_net = seresnext50_unet_fpn(
resolution=(crop_size, crop_size),
load_pretrained=args.load_pretrained
)
if args.loss == 'BCE_Lovasz':
_criterion = BCE_Lovasz_LOSS()
else:
_criterion = BCE_DICE_LOSS()
if args.resume_epoch is not None:
if args.resume_weight is None:
raise ValueError('resume weights file is not define')
dir_resume = args.resume_weight
param_dict = ms.load_checkpoint(dir_resume)
ms.load_param_into_net(_net, param_dict)
resume_epoch = args.resume_epoch
if args.close_python_multiprocessing:
python_multiprocessing = False
if args.visual:
visual_flag = True
logger.info(f'''
==================================INFO=======================================
path config :
data_root : {dir_root}
dir_weights : {dir_weights}
dir_log : {dir_log}
net : {net_name}
pretrained weight : {'Enabled' if args.load_pretrained else 'Disabled'}
training config :
epochs : {args.epochs}
batch_size : {args.batch_size}
device : {args.device_target}
multiprocessing : {'Enabled' if python_multiprocessing else 'Disabled'}
visual in eval : {'Enabled' if visual_flag else 'Disabled'}
=============================================================================
''')
try:
trainNet(
net=_net,
criterion=_criterion,
epochs=args.epochs,
batch_size=args.batch_size
)
except InterruptedError:
logger.error('Interrupted')