-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathNAMESPACE
61 lines (55 loc) · 1.72 KB
/
NAMESPACE
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
## compiled code
useDynLib(gravy)
## Export
export(GaussPara, HOF, betadiversity, betahill, boxgradient,
gaussgradient, gradscale, hillscale, nichelap, pick.model, plotGrad)
## Do NOT export the following internal functions:
## export(HOF1, gradder.HOF, scale01, ssHOF)
## S3 methods
import(lattice)
importFrom("grDevices", "boxplot.stats")
importFrom("graphics", "abline", "axis", "box", "boxplot", "lines",
"matlines", "par", "points", "polygon", "rug")
importFrom("stats", "binomial", "coef", "deviance", "df.residual",
"fitted", "glm", "integrate", "logLik", "median", "nlm",
"optimize", "plogis", "poisson", "predict", "printCoefmat",
"qchisq", "qf", "quasibinomial", "residuals", "spline",
"uniroot", "weighted.mean")
# GaussPara: gravy
S3method(GaussPara, HOF.frame)
S3method(GaussPara, HOF)
S3method(GaussPara, optop.HOF)
S3method(GaussPara, tol.HOF)
# HOF: gravy
S3method(HOF, data.frame)
S3method(HOF, default)
# as.matrix: base
S3method(as.matrix, nichelap.HOF.frame)
# betadiversity: gravy
S3method(betadiversity, HOF.frame)
# coef, deviance, df.residual, fitted, logLik: stats
S3method(coef, HOF)
S3method(deviance, HOF)
S3method(df.residual, HOF)
S3method(fitted, HOF)
S3method(logLik, HOF)
# nichelap: gravy
S3method(nichelap, HOF.frame)
S3method(nichelap, HOF)
# plot: graphics
S3method(plot, HOF.frame)
S3method(plot, HOF)
S3method(plot, betadiversity)
S3method(plot, hillscale)
# predict: stats
S3method(predict, HOF)
# print: base
S3method(print, GaussPara.HOF.frame)
S3method(print, GaussPara.HOF)
S3method(print, HOF.frame)
S3method(print, HOF)
S3method(print, betadiversity)
S3method(print, hillscale)
S3method(print, nichelap.HOF.frame)
# residuals: stats
S3method(residuals, HOF)